Kernel Debiased Plug-in Estimation: Simultaneous, Automated Debiasing without Influence Functions for Many Target Parameters.

Brian Cho, Yaroslav Mukhin, Kyra Gan, Ivana Malenica
{"title":"Kernel Debiased Plug-in Estimation: Simultaneous, Automated Debiasing without Influence Functions for Many Target Parameters.","authors":"Brian Cho, Yaroslav Mukhin, Kyra Gan, Ivana Malenica","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>When estimating target parameters in nonparametric models with nuisance parameters, substituting the unknown nuisances with nonparametric estimators can introduce \"plug-in bias.\" Traditional methods addressing this suboptimal bias-variance trade-off rely on the <i>influence function</i> (IF) of the target parameter. When estimating multiple target parameters, these methods require debiasing the nuisance parameter multiple times using the corresponding IFs, which poses analytical and computational challenges. In this work, we leverage the <i>targeted maximum likelihood estimation</i> (TMLE) framework to propose a novel method named <i>kernel debiased plug-in estimation</i> (KDPE). KDPE refines an initial estimate through regularized likelihood maximization steps, employing a nonparametric model based on <i>reproducing kernel Hilbert spaces</i>. We show that KDPE: (i) simultaneously debiases <i>all</i> pathwise differentiable target parameters that satisfy our regularity conditions, (ii) does not require the IF for implementation, and (iii) remains computationally tractable. We numerically illustrate the use of KDPE and validate our theoretical results.</p>","PeriodicalId":74504,"journal":{"name":"Proceedings of machine learning research","volume":"235 ","pages":"8534-8555"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11359899/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of machine learning research","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

When estimating target parameters in nonparametric models with nuisance parameters, substituting the unknown nuisances with nonparametric estimators can introduce "plug-in bias." Traditional methods addressing this suboptimal bias-variance trade-off rely on the influence function (IF) of the target parameter. When estimating multiple target parameters, these methods require debiasing the nuisance parameter multiple times using the corresponding IFs, which poses analytical and computational challenges. In this work, we leverage the targeted maximum likelihood estimation (TMLE) framework to propose a novel method named kernel debiased plug-in estimation (KDPE). KDPE refines an initial estimate through regularized likelihood maximization steps, employing a nonparametric model based on reproducing kernel Hilbert spaces. We show that KDPE: (i) simultaneously debiases all pathwise differentiable target parameters that satisfy our regularity conditions, (ii) does not require the IF for implementation, and (iii) remains computationally tractable. We numerically illustrate the use of KDPE and validate our theoretical results.

核去偏插件估算:针对众多目标参数的无影响函数同步自动去差分。
在带有干扰参数的非参数模型中估计目标参数时,用非参数估计器替代未知干扰参数可能会引入 "插入偏差"。解决这种偏差-方差权衡次优问题的传统方法依赖于目标参数的影响函数(IF)。在估计多个目标参数时,这些方法需要使用相应的影响函数多次去扰动参数,这给分析和计算带来了挑战。在这项工作中,我们利用目标最大似然估计(TMLE)框架,提出了一种名为核去势插件估计(KDPE)的新方法。KDPE 采用基于再现核希尔伯特空间的非参数模型,通过正则化似然最大化步骤完善初始估计值。我们证明了 KDPE:(i) 能同时去除满足正则条件的所有路径可变目标参数,(ii) 不需要 IF 来实现,(iii) 计算上仍然可行。我们用数字说明了 KDPE 的使用,并验证了我们的理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信