{"title":"Optimum designs for clinical trials in personalized medicine when response variance depends on treatment.","authors":"Belmiro P M Duarte, Anthony C Atkinson","doi":"10.1080/10543406.2024.2395548","DOIUrl":null,"url":null,"abstract":"<p><p>We study optimal designs for clinical trials when the value of the response and its variance depend on treatment and covariates are included in the response model. Such designs are generalizations of Neyman allocation, commonly used in personalized medicine when external factors may have differing effects on the response depending on subgroups of patients. We develop theoretical results for D-, A-, E- and D<math><msub><mi> </mi><mrow><mrow><mi>A</mi></mrow></mrow></msub></math>-optimal designs and construct semidefinite programming (SDP) formulations that support their numerical computation. D-, A-, and E-optimal designs are appropriate for efficient estimation of distinct properties of the parameters of the response models. Our formulation allows finding optimal allocation schemes for a general number of treatments and of covariates. Finally, we study frequentist sequential clinical trial allocation within contexts where response parameters and their respective variances remain unknown. We illustrate, with a simulated example and with a redesigned clinical trial on the treatment of neuro-degenerative disease, that both theoretical and SDP results, derived under the assumption of known variances, converge asymptotically to allocations obtained through the sequential scheme. Procedures to use static and sequential allocation are proposed.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"1-18"},"PeriodicalIF":1.2000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biopharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10543406.2024.2395548","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
We study optimal designs for clinical trials when the value of the response and its variance depend on treatment and covariates are included in the response model. Such designs are generalizations of Neyman allocation, commonly used in personalized medicine when external factors may have differing effects on the response depending on subgroups of patients. We develop theoretical results for D-, A-, E- and D-optimal designs and construct semidefinite programming (SDP) formulations that support their numerical computation. D-, A-, and E-optimal designs are appropriate for efficient estimation of distinct properties of the parameters of the response models. Our formulation allows finding optimal allocation schemes for a general number of treatments and of covariates. Finally, we study frequentist sequential clinical trial allocation within contexts where response parameters and their respective variances remain unknown. We illustrate, with a simulated example and with a redesigned clinical trial on the treatment of neuro-degenerative disease, that both theoretical and SDP results, derived under the assumption of known variances, converge asymptotically to allocations obtained through the sequential scheme. Procedures to use static and sequential allocation are proposed.
期刊介绍:
The Journal of Biopharmaceutical Statistics, a rapid publication journal, discusses quality applications of statistics in biopharmaceutical research and development. Now publishing six times per year, it includes expositions of statistical methodology with immediate applicability to biopharmaceutical research in the form of full-length and short manuscripts, review articles, selected/invited conference papers, short articles, and letters to the editor. Addressing timely and provocative topics important to the biostatistical profession, the journal covers:
Drug, device, and biological research and development;
Drug screening and drug design;
Assessment of pharmacological activity;
Pharmaceutical formulation and scale-up;
Preclinical safety assessment;
Bioavailability, bioequivalence, and pharmacokinetics;
Phase, I, II, and III clinical development including complex innovative designs;
Premarket approval assessment of clinical safety;
Postmarketing surveillance;
Big data and artificial intelligence and applications.