Can incorporating image resolution into neural networks improve kidney tumor classification performance in ultrasound images?

IF 2.6 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Haihao He, Yuhan Liu, Xin Zhou, Jia Zhan, Changyan Wang, Yiwen Shen, Haobo Chen, Lin Chen, Qi Zhang
{"title":"Can incorporating image resolution into neural networks improve kidney tumor classification performance in ultrasound images?","authors":"Haihao He, Yuhan Liu, Xin Zhou, Jia Zhan, Changyan Wang, Yiwen Shen, Haobo Chen, Lin Chen, Qi Zhang","doi":"10.1007/s11517-024-03188-8","DOIUrl":null,"url":null,"abstract":"<p><p>Deep learning has been widely used in ultrasound image analysis, and it also benefits kidney ultrasound interpretation and diagnosis. However, the importance of ultrasound image resolution often goes overlooked within deep learning methodologies. In this study, we integrate the ultrasound image resolution into a convolutional neural network and explore the effect of the resolution on diagnosis of kidney tumors. In the process of integrating the image resolution information, we propose two different approaches to narrow the semantic gap between the features extracted by the neural network and the resolution features. In the first approach, the resolution is directly concatenated with the features extracted by the neural network. In the second approach, the features extracted by the neural network are first dimensionally reduced and then combined with the resolution features to form new composite features. We compare these two approaches incorporating the resolution with the method without incorporating the resolution on a kidney tumor dataset of 926 images consisting of 211 images of benign kidney tumors and 715 images of malignant kidney tumors. The area under the receiver operating characteristic curve (AUC) of the method without incorporating the resolution is 0.8665, and the AUCs of the two approaches incorporating the resolution are 0.8926 (P < 0.0001) and 0.9135 (P < 0.0001) respectively. This study has established end-to-end kidney tumor classification systems and has demonstrated the benefits of integrating image resolution, showing that incorporating image resolution into neural networks can more accurately distinguish between malignant and benign kidney tumors in ultrasound images.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-024-03188-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Deep learning has been widely used in ultrasound image analysis, and it also benefits kidney ultrasound interpretation and diagnosis. However, the importance of ultrasound image resolution often goes overlooked within deep learning methodologies. In this study, we integrate the ultrasound image resolution into a convolutional neural network and explore the effect of the resolution on diagnosis of kidney tumors. In the process of integrating the image resolution information, we propose two different approaches to narrow the semantic gap between the features extracted by the neural network and the resolution features. In the first approach, the resolution is directly concatenated with the features extracted by the neural network. In the second approach, the features extracted by the neural network are first dimensionally reduced and then combined with the resolution features to form new composite features. We compare these two approaches incorporating the resolution with the method without incorporating the resolution on a kidney tumor dataset of 926 images consisting of 211 images of benign kidney tumors and 715 images of malignant kidney tumors. The area under the receiver operating characteristic curve (AUC) of the method without incorporating the resolution is 0.8665, and the AUCs of the two approaches incorporating the resolution are 0.8926 (P < 0.0001) and 0.9135 (P < 0.0001) respectively. This study has established end-to-end kidney tumor classification systems and has demonstrated the benefits of integrating image resolution, showing that incorporating image resolution into neural networks can more accurately distinguish between malignant and benign kidney tumors in ultrasound images.

Abstract Image

将图像分辨率纳入神经网络能否提高超声图像中肾肿瘤的分类性能?
深度学习已被广泛应用于超声图像分析,它也有益于肾脏超声解读和诊断。然而,在深度学习方法中,超声图像分辨率的重要性往往被忽视。在本研究中,我们将超声图像分辨率整合到卷积神经网络中,并探索分辨率对肾脏肿瘤诊断的影响。在整合图像分辨率信息的过程中,我们提出了两种不同的方法来缩小神经网络提取的特征与分辨率特征之间的语义差距。在第一种方法中,分辨率与神经网络提取的特征直接关联。在第二种方法中,首先对神经网络提取的特征进行降维处理,然后与分辨率特征相结合,形成新的复合特征。我们在一个肾肿瘤数据集上比较了这两种包含分辨率的方法和不包含分辨率的方法,该数据集包含 926 张图像,其中良性肾肿瘤图像 211 张,恶性肾肿瘤图像 715 张。未加入分辨率的方法的接收器工作特征曲线下面积(AUC)为 0.8665,而加入分辨率的两种方法的接收器工作特征曲线下面积(AUC)为 0.8926(P<0.05)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Medical & Biological Engineering & Computing
Medical & Biological Engineering & Computing 医学-工程:生物医学
CiteScore
6.00
自引率
3.10%
发文量
249
审稿时长
3.5 months
期刊介绍: Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging. MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field. MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信