{"title":"Reconstruction residual network with a fused spatial-channel attention mechanism for automatically classifying diabetic foot ulcer.","authors":"Jyun-Guo Wang, Yu-Ting Huang","doi":"10.1007/s13246-024-01472-3","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetic foot ulcer (DFU) is a common chronic complication of diabetes. This complication is characterized by the formation of ulcers that are difficult to heal on the skin of the foot. Ulcers can negatively affect patients' quality of life, and improperly treated lesions can result in amputation and even death. Traditionally, the severity and type of foot ulcers are determined by doctors through visual observations and on the basis of their clinical experience; however, this subjective evaluation can lead to misjudgments. In addition, quantitative methods have been developed for classifying and scoring are therefore time-consuming and labor-intensive. In this paper, we propose a reconstruction residual network with a fused spatial-channel attention mechanism (FARRNet) for automatically classifying DFUs. The use of pseudo-labeling and Data augmentation as a pre-processing technique can overcome problems caused by data imbalance and small sample size. The developed model's attention was enhanced using a spatial channel attention (SPCA) module that incorporates spatial and channel attention mechanisms. A reconstruction mechanism was incorporated into the developed residual network to improve its feature extraction ability for achieving better classification. The performance of the proposed model was compared with that of state-of-the-art models and those in the DFUC Grand Challenge. When applied to the DFUC Grand Challenge, the proposed method outperforms other state-of-the-art schemes in terms of accuracy, as evaluated using 5-fold cross-validation and the following metrics: macro-average F1-score, AUC, Recall, and Precision. FARRNet achieved the F1-score of 60.81%, AUC of 87.37%, Recall of 61.04%, and Precision of 61.56%. Therefore, the proposed model is more suitable for use in medical diagnosis environments with embedded devices and limited computing resources. The proposed model can assist patients in initial identifications of ulcer wounds, thereby helping them to obtain timely treatment.</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":" ","pages":"1581-1592"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical and Engineering Sciences in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13246-024-01472-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Diabetic foot ulcer (DFU) is a common chronic complication of diabetes. This complication is characterized by the formation of ulcers that are difficult to heal on the skin of the foot. Ulcers can negatively affect patients' quality of life, and improperly treated lesions can result in amputation and even death. Traditionally, the severity and type of foot ulcers are determined by doctors through visual observations and on the basis of their clinical experience; however, this subjective evaluation can lead to misjudgments. In addition, quantitative methods have been developed for classifying and scoring are therefore time-consuming and labor-intensive. In this paper, we propose a reconstruction residual network with a fused spatial-channel attention mechanism (FARRNet) for automatically classifying DFUs. The use of pseudo-labeling and Data augmentation as a pre-processing technique can overcome problems caused by data imbalance and small sample size. The developed model's attention was enhanced using a spatial channel attention (SPCA) module that incorporates spatial and channel attention mechanisms. A reconstruction mechanism was incorporated into the developed residual network to improve its feature extraction ability for achieving better classification. The performance of the proposed model was compared with that of state-of-the-art models and those in the DFUC Grand Challenge. When applied to the DFUC Grand Challenge, the proposed method outperforms other state-of-the-art schemes in terms of accuracy, as evaluated using 5-fold cross-validation and the following metrics: macro-average F1-score, AUC, Recall, and Precision. FARRNet achieved the F1-score of 60.81%, AUC of 87.37%, Recall of 61.04%, and Precision of 61.56%. Therefore, the proposed model is more suitable for use in medical diagnosis environments with embedded devices and limited computing resources. The proposed model can assist patients in initial identifications of ulcer wounds, thereby helping them to obtain timely treatment.