N Arfian, G C Nugraha, S M S Kencana, G Alexandra, N D Eliyani, K C Dewi, R Rinendyaputri, U A Nikmah, P R Intan, D C R Sari
{"title":"Calcitriol attenuates inflammatory response in the lung of diabetes mellitus rat model.","authors":"N Arfian, G C Nugraha, S M S Kencana, G Alexandra, N D Eliyani, K C Dewi, R Rinendyaputri, U A Nikmah, P R Intan, D C R Sari","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Inflammation caused by diabetes can damage multiple organs, including the lungs. Vitamin D (VD) has been shown to potentially reduce inflammation and boost the immune system. VD might play a role in diabetes' inflammatory response. This study aims to elucidate the evidence regarding the lung as the target organ for DM and the possible role of VD in preventing pulmonary damage progression in the diabetes rat model.</p><p><strong>Material and methods: </strong>Thirty Sprague Dawley rats (3-monthold, 200 to 300 gm) were randomly divided into six groups, namely control (C), 4 weeks diabetes mellitus (DM1), 8 weeks DM (DM2) and three DM1 groups (VD1, VD2, and VD3) who received Vitamin D doses of 0.125, 0.25 and 0.50 μg/kg BW, respectively. After 4 weeks, daily VD was administered intraperitoneally for 30 days. Lung tissues were taken for IL- 6, MCP-1, NFKB and CD68 mRNA expression analysis and paraffin embedding. Immunohistochemical staining against CD68 and MCP-1 was conducted. Data were analysed using one-way ANOVA. p < 0.05 was considered statistically significant.</p><p><strong>Results: </strong>DM2 group represented significantly higher IL6, MCP1, NFKB and CD68 mRNA expression than Control group (p < 0.05). Meanwhile, VD2 and VD3 groups revealed significantly lower mRNA expression of IL-6, MCP1, NFKB and CD68 than DM2 (p < 0.05). Immunostaining revealed the spreading of MCP1 protein expression in lung tissue along with macrophage infiltration in the DM2 group, which was reduced in the VD2 and the VD3 groups.</p><p><strong>Conclusion: </strong>VD shows a protective effect on diabetesinduced lung damage by regulating inflammation factors.</p>","PeriodicalId":39388,"journal":{"name":"Medical Journal of Malaysia","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Journal of Malaysia","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Inflammation caused by diabetes can damage multiple organs, including the lungs. Vitamin D (VD) has been shown to potentially reduce inflammation and boost the immune system. VD might play a role in diabetes' inflammatory response. This study aims to elucidate the evidence regarding the lung as the target organ for DM and the possible role of VD in preventing pulmonary damage progression in the diabetes rat model.
Material and methods: Thirty Sprague Dawley rats (3-monthold, 200 to 300 gm) were randomly divided into six groups, namely control (C), 4 weeks diabetes mellitus (DM1), 8 weeks DM (DM2) and three DM1 groups (VD1, VD2, and VD3) who received Vitamin D doses of 0.125, 0.25 and 0.50 μg/kg BW, respectively. After 4 weeks, daily VD was administered intraperitoneally for 30 days. Lung tissues were taken for IL- 6, MCP-1, NFKB and CD68 mRNA expression analysis and paraffin embedding. Immunohistochemical staining against CD68 and MCP-1 was conducted. Data were analysed using one-way ANOVA. p < 0.05 was considered statistically significant.
Results: DM2 group represented significantly higher IL6, MCP1, NFKB and CD68 mRNA expression than Control group (p < 0.05). Meanwhile, VD2 and VD3 groups revealed significantly lower mRNA expression of IL-6, MCP1, NFKB and CD68 than DM2 (p < 0.05). Immunostaining revealed the spreading of MCP1 protein expression in lung tissue along with macrophage infiltration in the DM2 group, which was reduced in the VD2 and the VD3 groups.
Conclusion: VD shows a protective effect on diabetesinduced lung damage by regulating inflammation factors.
期刊介绍:
Published since 1890 this journal originated as the Journal of the Straits Medical Association. With the formation of the Malaysian Medical Association (MMA), the Journal became the official organ, supervised by an editorial board. Some of the early Hon. Editors were Mr. H.M. McGladdery (1960 - 1964), Dr. A.A. Sandosham (1965 - 1977), Prof. Paul C.Y. Chen (1977 - 1987). It is a scientific journal, published quarterly and can be found in medical libraries in many parts of the world. The Journal also enjoys the status of being listed in the Index Medicus, the internationally accepted reference index of medical journals. The editorial columns often reflect the Association''s views and attitudes towards medical problems in the country. The MJM aims to be a peer reviewed scientific journal of the highest quality. We want to ensure that whatever data is published is true and any opinion expressed important to medical science. We believe being Malaysian is our unique niche; our priority will be for scientific knowledge about diseases found in Malaysia and for the practice of medicine in Malaysia. The MJM will archive knowledge about the changing pattern of human diseases and our endeavours to overcome them. It will also document how medicine develops as a profession in the nation. We will communicate and co-operate with other scientific journals in Malaysia. We seek articles that are of educational value to doctors. We will consider all unsolicited articles submitted to the journal and will commission distinguished Malaysians to write relevant review articles. We want to help doctors make better decisions and be good at judging the value of scientific data. We want to help doctors write better, to be articulate and precise.