Yunpeng Liu, Kaifeng Gan, Jin Li, Dechao Sun, Hong Qiu, Dongquan Liu
{"title":"[Study on automatic and rapid diagnosis of distal radius fracture by X-ray].","authors":"Yunpeng Liu, Kaifeng Gan, Jin Li, Dechao Sun, Hong Qiu, Dongquan Liu","doi":"10.7507/1001-5515.202309050","DOIUrl":null,"url":null,"abstract":"<p><p>This article aims to combine deep learning with image analysis technology and propose an effective classification method for distal radius fracture types. Firstly, an extended U-Net three-layer cascaded segmentation network was used to accurately segment the most important joint surface and non joint surface areas for identifying fractures. Then, the images of the joint surface area and non joint surface area separately were classified and trained to distinguish fractures. Finally, based on the classification results of the two images, the normal or ABC fracture classification results could be comprehensively determined. The accuracy rates of normal, A-type, B-type, and C-type fracture on the test set were 0.99, 0.92, 0.91, and 0.82, respectively. For orthopedic medical experts, the average recognition accuracy rates were 0.98, 0.90, 0.87, and 0.81, respectively. The proposed automatic recognition method is generally better than experts, and can be used for preliminary auxiliary diagnosis of distal radius fractures in scenarios without expert participation.</p>","PeriodicalId":39324,"journal":{"name":"生物医学工程学杂志","volume":"41 4","pages":"798-806"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11366454/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物医学工程学杂志","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.7507/1001-5515.202309050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
This article aims to combine deep learning with image analysis technology and propose an effective classification method for distal radius fracture types. Firstly, an extended U-Net three-layer cascaded segmentation network was used to accurately segment the most important joint surface and non joint surface areas for identifying fractures. Then, the images of the joint surface area and non joint surface area separately were classified and trained to distinguish fractures. Finally, based on the classification results of the two images, the normal or ABC fracture classification results could be comprehensively determined. The accuracy rates of normal, A-type, B-type, and C-type fracture on the test set were 0.99, 0.92, 0.91, and 0.82, respectively. For orthopedic medical experts, the average recognition accuracy rates were 0.98, 0.90, 0.87, and 0.81, respectively. The proposed automatic recognition method is generally better than experts, and can be used for preliminary auxiliary diagnosis of distal radius fractures in scenarios without expert participation.