[Research on dynamic blood oxygen saturation measurement based on motion noise reconstruction combined with convex combination least mean square adaptive filter].

Q4 Medicine
Linjia Zhang, Xiaomin Yu, Jian Lin, Chengen Chou, Zhengxian Wang
{"title":"[Research on dynamic blood oxygen saturation measurement based on motion noise reconstruction combined with convex combination least mean square adaptive filter].","authors":"Linjia Zhang, Xiaomin Yu, Jian Lin, Chengen Chou, Zhengxian Wang","doi":"10.7507/1001-5515.202310053","DOIUrl":null,"url":null,"abstract":"<p><p>The performance of a pulse oximeter based on photoelectric detection is greatly affected by motion noise (MA) in the photoplethysmographic (PPG) signal. This paper presents an algorithm for detecting motion oxygen saturation, which reconstructs a motion noise reference signal using ensemble of complete adaptive noise and empirical mode decomposition combined with multi-scale permutation entropy, and eliminates MA in the PPG signal using a convex combination least mean square adaptive filters to calculate dynamic oxygen saturation. The test results show that, under simulated walking and jogging conditions, the mean absolute error (MAE) of oxygen saturation estimated by the proposed algorithm and the reference oxygen saturation are 0.05 and 0.07, respectively, with means absolute percentage error (MAPE) of 0.05% and 0.07%, respectively. The overall Pearson correlation coefficient reaches 0.971 2. The proposed scheme effectively reduces motion artifacts in the corrupted PPG signal and is expected to be applied in portable photoelectric pulse oximeters to improve the accuracy of dynamic oxygen saturation measurement.</p>","PeriodicalId":39324,"journal":{"name":"生物医学工程学杂志","volume":"41 4","pages":"818-825"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11366476/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物医学工程学杂志","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.7507/1001-5515.202310053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

The performance of a pulse oximeter based on photoelectric detection is greatly affected by motion noise (MA) in the photoplethysmographic (PPG) signal. This paper presents an algorithm for detecting motion oxygen saturation, which reconstructs a motion noise reference signal using ensemble of complete adaptive noise and empirical mode decomposition combined with multi-scale permutation entropy, and eliminates MA in the PPG signal using a convex combination least mean square adaptive filters to calculate dynamic oxygen saturation. The test results show that, under simulated walking and jogging conditions, the mean absolute error (MAE) of oxygen saturation estimated by the proposed algorithm and the reference oxygen saturation are 0.05 and 0.07, respectively, with means absolute percentage error (MAPE) of 0.05% and 0.07%, respectively. The overall Pearson correlation coefficient reaches 0.971 2. The proposed scheme effectively reduces motion artifacts in the corrupted PPG signal and is expected to be applied in portable photoelectric pulse oximeters to improve the accuracy of dynamic oxygen saturation measurement.

[基于运动噪声重构结合凸组合最小均方自适应滤波器的动态血氧饱和度测量研究]。
基于光电检测的脉搏血氧仪的性能在很大程度上会受到光电血氧(PPG)信号中运动噪声(MA)的影响。本文提出了一种检测运动氧饱和度的算法,该算法利用完全自适应噪声和经验模式分解的集合结合多尺度置换熵重建运动噪声参考信号,并利用凸组合最小均方自适应滤波器消除 PPG 信号中的 MA,从而计算动态氧饱和度。测试结果表明,在模拟步行和慢跑条件下,拟议算法估计的血氧饱和度与参考血氧饱和度的平均绝对误差(MAE)分别为 0.05 和 0.07,平均绝对百分比误差(MAPE)分别为 0.05% 和 0.07%。总体皮尔逊相关系数达到 0.971 2。所提出的方案有效地减少了被破坏的 PPG 信号中的运动伪影,有望应用于便携式光电脉搏血氧仪,以提高动态血氧饱和度测量的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
生物医学工程学杂志
生物医学工程学杂志 Medicine-Medicine (all)
CiteScore
0.80
自引率
0.00%
发文量
4868
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信