[A deep transfer learning approach for cross-subject recognition of mental tasks based on functional near-infrared spectroscopy].

Q4 Medicine
Yao Zhang, Dongyuan Liu, Feng Gao
{"title":"[A deep transfer learning approach for cross-subject recognition of mental tasks based on functional near-infrared spectroscopy].","authors":"Yao Zhang, Dongyuan Liu, Feng Gao","doi":"10.7507/1001-5515.202310002","DOIUrl":null,"url":null,"abstract":"<p><p>In the field of brain-computer interfaces (BCIs) based on functional near-infrared spectroscopy (fNIRS), traditional subject-specific decoding methods suffer from the limitations of long calibration time and low cross-subject generalizability, which restricts the promotion and application of BCI systems in daily life and clinic. To address the above dilemma, this study proposes a novel deep transfer learning approach that combines the revised inception-residual network (rIRN) model and the model-based transfer learning (TL) strategy, referred to as TL-rIRN. This study performed cross-subject recognition experiments on mental arithmetic (MA) and mental singing (MS) tasks to validate the effectiveness and superiority of the TL-rIRN approach. The results show that the TL-rIRN significantly shortens the calibration time, reduces the training time of the target model and the consumption of computational resources, and dramatically enhances the cross-subject decoding performance compared to subject-specific decoding methods and other deep transfer learning methods. To sum up, this study provides a basis for the selection of cross-subject, cross-task, and real-time decoding algorithms for fNIRS-BCI systems, which has potential applications in constructing a convenient and universal BCI system.</p>","PeriodicalId":39324,"journal":{"name":"生物医学工程学杂志","volume":"41 4","pages":"673-683"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11366474/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物医学工程学杂志","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.7507/1001-5515.202310002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

In the field of brain-computer interfaces (BCIs) based on functional near-infrared spectroscopy (fNIRS), traditional subject-specific decoding methods suffer from the limitations of long calibration time and low cross-subject generalizability, which restricts the promotion and application of BCI systems in daily life and clinic. To address the above dilemma, this study proposes a novel deep transfer learning approach that combines the revised inception-residual network (rIRN) model and the model-based transfer learning (TL) strategy, referred to as TL-rIRN. This study performed cross-subject recognition experiments on mental arithmetic (MA) and mental singing (MS) tasks to validate the effectiveness and superiority of the TL-rIRN approach. The results show that the TL-rIRN significantly shortens the calibration time, reduces the training time of the target model and the consumption of computational resources, and dramatically enhances the cross-subject decoding performance compared to subject-specific decoding methods and other deep transfer learning methods. To sum up, this study provides a basis for the selection of cross-subject, cross-task, and real-time decoding algorithms for fNIRS-BCI systems, which has potential applications in constructing a convenient and universal BCI system.

[基于功能性近红外光谱的跨主体心理任务识别深度迁移学习方法]。
在基于功能近红外光谱(fNIRS)的脑机接口(BCI)领域,传统的特定受试者解码方法存在校准时间长、跨受试者通用性低等局限,制约了BCI系统在日常生活和临床中的推广和应用。为解决上述难题,本研究提出了一种新的深度迁移学习方法,该方法结合了修正的初始-残差网络(rIRN)模型和基于模型的迁移学习(TL)策略,简称为TL-rIRN。本研究在心算(MA)和心唱(MS)任务中进行了跨主体识别实验,以验证 TL-rIRN 方法的有效性和优越性。结果表明,与特定主体解码方法和其他深度迁移学习方法相比,TL-rIRN 大大缩短了校准时间,减少了目标模型的训练时间和计算资源的消耗,并显著提高了跨主体解码性能。总之,本研究为 fNIRS-BCI 系统的跨主体、跨任务和实时解码算法的选择提供了依据,在构建便捷通用的 BCI 系统方面具有潜在的应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
生物医学工程学杂志
生物医学工程学杂志 Medicine-Medicine (all)
CiteScore
0.80
自引率
0.00%
发文量
4868
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信