H Behrensdorf-Nicol, B Krämer, D Le Tallec, N Sinitskaya, M-E Behr-Gross
{"title":"Collaborative study for the characterisation of the BINACLE Assay for <i>in vitro</i> detection of tetanus toxicity in toxoids - Part 1.","authors":"H Behrensdorf-Nicol, B Krämer, D Le Tallec, N Sinitskaya, M-E Behr-Gross","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>For several decades the European Pharmacopoeia monographs <i>Tetanus vaccine (adsorbed) (0452)</i> and <i>Tetanus vaccine for veterinary use (0697)</i> required that Specific toxicity and Absence of toxin and irreversibility of the toxoidof each bulk of tetanus toxoids had to be tested by an <i>in vivo</i> toxicity test in guinea pigs before it could be included in vaccines for human or veterinary use. In line with the 3Rs concept of replacing, reducing and refining animal experiments, an <i>in vitro</i> method for the detection of active tetanus neurotoxin (TeNT) has been developed at the Paul-Ehrlich-Institut (PEI, Germany). This method, the so-called BINACLE (binding and cleavage) assay, uses the receptor-binding and proteolytic properties of TeNT for the specific detection of active toxin molecules. Successful in-house validation studies as well as a small-scale transferability study had demonstrated that this method may represent a suitable alternative to the compendial <i>in vivo</i> toxicity test. As a follow up, an international collaborative study aimed at verifying the suitability of the BINACLE assay as a potential alternative to the guinea pig toxicity test for tetanus toxoids was organised by the European Directorate for the Quality of Medicines & HealthCare (EDQM) under the aegis of its Biological Standardisation Programme (BSP). Within the framework of this study, coded BSP136, a feasibility phase - also referred to as Phase 1 - was run to select and qualify critical study reagents and samples and to assess the performance of the BINACLE Standard Operating Procedure developed by the project leaders. Then the international collaborative study aimed at evaluating the BINACLE, referred to as BSP136 Phase 2, was started. A total of 19 international laboratories (comprising vaccine manufacturers as well as national control laboratories) were supplied with a detailed assay protocol, critical reagents required for the assay, three samples consisting of three different bulk tetanus toxoids donated by major European vaccine manufacturers and one international standard toxoid. Each of the participants was asked to perform three independent BINACLE assays following the provided protocol. The statistical analysis of the results showed that most of the participating laboratories were able to perform the BINACLE assay according to the provided protocol. However, the results obtained by the participants varied widely, and not all the laboratories were able to achieve a sensitive detection of active TeNT. Multiple factors may have contributed to the elevated variability of the BSP136 study results. From an analysis of these factors, strategies were developed to help increase the standardisation of the BINACLE assay and obtain more consistent results in a follow-up validation study, BSP 136 Phase 3 (Part 2), for which the experimental phase took place in 2023. The present manuscript summarises the outcome of Phases 1 and 2, which constitute Part 1 of the BSP136 project.</p>","PeriodicalId":39192,"journal":{"name":"Pharmeuropa bio & scientific notes","volume":"2024 ","pages":"127-161"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmeuropa bio & scientific notes","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
For several decades the European Pharmacopoeia monographs Tetanus vaccine (adsorbed) (0452) and Tetanus vaccine for veterinary use (0697) required that Specific toxicity and Absence of toxin and irreversibility of the toxoidof each bulk of tetanus toxoids had to be tested by an in vivo toxicity test in guinea pigs before it could be included in vaccines for human or veterinary use. In line with the 3Rs concept of replacing, reducing and refining animal experiments, an in vitro method for the detection of active tetanus neurotoxin (TeNT) has been developed at the Paul-Ehrlich-Institut (PEI, Germany). This method, the so-called BINACLE (binding and cleavage) assay, uses the receptor-binding and proteolytic properties of TeNT for the specific detection of active toxin molecules. Successful in-house validation studies as well as a small-scale transferability study had demonstrated that this method may represent a suitable alternative to the compendial in vivo toxicity test. As a follow up, an international collaborative study aimed at verifying the suitability of the BINACLE assay as a potential alternative to the guinea pig toxicity test for tetanus toxoids was organised by the European Directorate for the Quality of Medicines & HealthCare (EDQM) under the aegis of its Biological Standardisation Programme (BSP). Within the framework of this study, coded BSP136, a feasibility phase - also referred to as Phase 1 - was run to select and qualify critical study reagents and samples and to assess the performance of the BINACLE Standard Operating Procedure developed by the project leaders. Then the international collaborative study aimed at evaluating the BINACLE, referred to as BSP136 Phase 2, was started. A total of 19 international laboratories (comprising vaccine manufacturers as well as national control laboratories) were supplied with a detailed assay protocol, critical reagents required for the assay, three samples consisting of three different bulk tetanus toxoids donated by major European vaccine manufacturers and one international standard toxoid. Each of the participants was asked to perform three independent BINACLE assays following the provided protocol. The statistical analysis of the results showed that most of the participating laboratories were able to perform the BINACLE assay according to the provided protocol. However, the results obtained by the participants varied widely, and not all the laboratories were able to achieve a sensitive detection of active TeNT. Multiple factors may have contributed to the elevated variability of the BSP136 study results. From an analysis of these factors, strategies were developed to help increase the standardisation of the BINACLE assay and obtain more consistent results in a follow-up validation study, BSP 136 Phase 3 (Part 2), for which the experimental phase took place in 2023. The present manuscript summarises the outcome of Phases 1 and 2, which constitute Part 1 of the BSP136 project.