Deep learning and direct sequencing of labeled RNA captures transcriptome dynamics.

IF 4 Q1 GENETICS & HEREDITY
NAR Genomics and Bioinformatics Pub Date : 2024-08-29 eCollection Date: 2024-09-01 DOI:10.1093/nargab/lqae116
Vlastimil Martinek, Jessica Martin, Cedric Belair, Matthew J Payea, Sulochan Malla, Panagiotis Alexiou, Manolis Maragkakis
{"title":"Deep learning and direct sequencing of labeled RNA captures transcriptome dynamics.","authors":"Vlastimil Martinek, Jessica Martin, Cedric Belair, Matthew J Payea, Sulochan Malla, Panagiotis Alexiou, Manolis Maragkakis","doi":"10.1093/nargab/lqae116","DOIUrl":null,"url":null,"abstract":"<p><p>In eukaryotes, genes produce a variety of distinct RNA isoforms, each with potentially unique protein products, coding potential or regulatory signals such as poly(A) tail and nucleotide modifications. Assessing the kinetics of RNA isoform metabolism, such as transcription and decay rates, is essential for unraveling gene regulation. However, it is currently impeded by lack of methods that can differentiate between individual isoforms. Here, we introduce RNAkinet, a deep convolutional and recurrent neural network, to detect nascent RNA molecules following metabolic labeling with the nucleoside analog 5-ethynyl uridine and long-read, direct RNA sequencing with nanopores. RNAkinet processes electrical signals from nanopore sequencing directly and distinguishes nascent from pre-existing RNA molecules. Our results show that RNAkinet prediction performance generalizes in various cell types and organisms and can be used to quantify RNA isoform half-lives. RNAkinet is expected to enable the identification of the kinetic parameters of RNA isoforms and to facilitate studies of RNA metabolism and the regulatory elements that influence it.</p>","PeriodicalId":33994,"journal":{"name":"NAR Genomics and Bioinformatics","volume":"6 3","pages":"lqae116"},"PeriodicalIF":4.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11358824/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAR Genomics and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/nargab/lqae116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

In eukaryotes, genes produce a variety of distinct RNA isoforms, each with potentially unique protein products, coding potential or regulatory signals such as poly(A) tail and nucleotide modifications. Assessing the kinetics of RNA isoform metabolism, such as transcription and decay rates, is essential for unraveling gene regulation. However, it is currently impeded by lack of methods that can differentiate between individual isoforms. Here, we introduce RNAkinet, a deep convolutional and recurrent neural network, to detect nascent RNA molecules following metabolic labeling with the nucleoside analog 5-ethynyl uridine and long-read, direct RNA sequencing with nanopores. RNAkinet processes electrical signals from nanopore sequencing directly and distinguishes nascent from pre-existing RNA molecules. Our results show that RNAkinet prediction performance generalizes in various cell types and organisms and can be used to quantify RNA isoform half-lives. RNAkinet is expected to enable the identification of the kinetic parameters of RNA isoforms and to facilitate studies of RNA metabolism and the regulatory elements that influence it.

深度学习和标记 RNA 的直接测序捕捉转录组动态。
在真核生物中,基因会产生多种不同的 RNA 异构体,每种 RNA 异构体都可能有独特的蛋白质产物、编码潜能或调控信号,如聚(A)尾和核苷酸修饰。评估 RNA 异构体代谢的动力学,如转录和衰变速率,对于揭示基因调控至关重要。然而,目前缺乏能区分单个异构体的方法阻碍了这一研究。在这里,我们介绍一种深度卷积和递归神经网络--RNAkinet,用于检测用核苷类似物 5-ethynyl uridine 进行代谢标记后的新生 RNA 分子,以及用纳米孔进行长读、直接 RNA 测序。RNAkinet 可直接处理来自纳米孔测序的电信号,并区分新生和已存在的 RNA 分子。我们的研究结果表明,RNAkinet 的预测性能适用于各种细胞类型和生物体,并可用于量化 RNA 异构体的半衰期。预计 RNAkinet 将有助于识别 RNA 同工酶的动力学参数,并促进对 RNA 代谢及其影响因素的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
2.20%
发文量
95
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信