[Improving effect of selenium on spermatogenesis in mice with cyclophosphamide-induced spermatogenic impairment and its underlying mechanism].

Q4 Medicine
中华男科学杂志 Pub Date : 2024-04-01
Fan Xiao, Wen-Jing Cheng, Guan-Xiang Yuan, Jin-Quan Cheng, Pei-Yi Liu
{"title":"[Improving effect of selenium on spermatogenesis in mice with cyclophosphamide-induced spermatogenic impairment and its underlying mechanism].","authors":"Fan Xiao, Wen-Jing Cheng, Guan-Xiang Yuan, Jin-Quan Cheng, Pei-Yi Liu","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To investigate the effect of selenium on cyclophosphamide (CTX)-induced spermatogenic impairment (SI) in mice and its underlying mechanism.</p><p><strong>Methods: </strong>We equally randomized 36 male KM mice into 3 SI model and 3 control groups, the first 3 treated by intraperitoneal injection of CTX at 100 mg/kg (the SI model control group), CTX plus SI model control group, selenium deficient model group (-Se SI), selenium supplemented model group (+Se SI), while latter 3 by intraperitoneal injection of normal saline (the normal control), selenium deficiency control group (-Se control), selenium addition control group (+Se control), respectively, all once a week for 6 successive weeks. Then we observed the histopathological changes in the testes of all the mice by HE staining, obtained the sperm count in the epididymides, determined the expressions of glutathione peroxidase 4 (GPx4) and SLC7A11 proteins by Western blot and ferroptosis-related genes by RT-qPCR, and examined the changes in the expressions of ferroptosis-related proteins and genes in the GC2-spd cells treated with ferroptosis inhibitors and inducers in combination with different concentrations of inorganic sodium selenite (SeS) and organic selenomethionine (SeM).</p><p><strong>Results: </strong>Compared with the normal controls, the SI model mice showed significantly decreased testicular and prostatic organ coefficients, reduced spermatogenic layers, increased voids, decreased serum ferritin concentration (P<0.05), and elevated transferrin concentration (P<0.05). The organ coefficients were significantly higher in the +Se SI and +Se control than in the -Se SI and -Se control groups (P<0.05, P<0.01), with evident pathological improvement of the testis tissue in the +Se controls. The expressions of the GPx4 and solute carrier family 7 members 11(SLC7A11) genes in the testis were dramatically down-regulated in the SI model controls (P<0.01), but up-regulated in the +Se SI and +Se control compared with those in the -Se SI and -Se control group (P<0.01 and P<0.05), but there were no statistically significant differences between their protein expressions. The results of in vitro GC2 spd cell experiments indicated that the GPx4 gene and GPx4 protein levels in the - Se group were significantly lower than those in the normal control group (P<0.05), while the SLC7A11 gene level decreased (P<0.01). Different doses of SeS and SeM significantly increased the GPx4 protein expression compared to the average Se group. Low doses of SeM promoted a significant increase in GPx4 gene levels, while high doses of SeS increased the expression levels of SLC7A11 gene and SLC7A11 protein (P<0.05, P<0.01). The Se group showed a significant decrease in the levels of acsl4 and ptgs2 genes compared to the normal control group. SeM promoted the expression of acsl4, while SeS promoted the expression of ptgs2 and fth1 (P<0.01, P<0.05). The intervention results of GC2 spd showed that the Erastin group had a decrease in ptgs2 compared to the normal control group, while the SeS+Erastin and SeM+Erastin groups had an increase in ptgs2 gene expression compared to the Erastin group. However, the ptgs2 expression of Fer-1 was lower than that of the normal control group, and the ptgs2 gene level of SeS+Fer-1 and SeM+Fer-1 groups was lower than that of Fer-1 group (P<0.05); The gene quantity of GPx4 in the SeM+Erastin and SeM+Fer-1 groups increased compared to the Erastin and Fer-1 groups (P<0.01, P<0.05); SeM+Erastin and SeS+Erastin showed a decrease in SLC7A11 compared to the Erastin group, as well as SeM+Fer-1 and SeS+Fer-1 groups compared to the Fer-1 group, accompanied by an increase in acsl4 and fth1 (P<0.01).</p><p><strong>Conclusion: </strong>Selenium deficiency causes the reduction of the SLC7A11 and GPx4 gene levels, disorder of ferroptosis-related genes and down-regulation of the GPx4 protein expression in the mouse testis and spermatocytes. Selenium can promote the expression of GPx4, up-regulate the level of SLC7A11, and improve spermatogenesis in the testis of the mouse with SI. There are differences between organic SeM and inorganic SeS in regulating the ferroptosis pathway-related genes.</p>","PeriodicalId":24012,"journal":{"name":"中华男科学杂志","volume":"30 4","pages":"291-299"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"中华男科学杂志","FirstCategoryId":"3","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: To investigate the effect of selenium on cyclophosphamide (CTX)-induced spermatogenic impairment (SI) in mice and its underlying mechanism.

Methods: We equally randomized 36 male KM mice into 3 SI model and 3 control groups, the first 3 treated by intraperitoneal injection of CTX at 100 mg/kg (the SI model control group), CTX plus SI model control group, selenium deficient model group (-Se SI), selenium supplemented model group (+Se SI), while latter 3 by intraperitoneal injection of normal saline (the normal control), selenium deficiency control group (-Se control), selenium addition control group (+Se control), respectively, all once a week for 6 successive weeks. Then we observed the histopathological changes in the testes of all the mice by HE staining, obtained the sperm count in the epididymides, determined the expressions of glutathione peroxidase 4 (GPx4) and SLC7A11 proteins by Western blot and ferroptosis-related genes by RT-qPCR, and examined the changes in the expressions of ferroptosis-related proteins and genes in the GC2-spd cells treated with ferroptosis inhibitors and inducers in combination with different concentrations of inorganic sodium selenite (SeS) and organic selenomethionine (SeM).

Results: Compared with the normal controls, the SI model mice showed significantly decreased testicular and prostatic organ coefficients, reduced spermatogenic layers, increased voids, decreased serum ferritin concentration (P<0.05), and elevated transferrin concentration (P<0.05). The organ coefficients were significantly higher in the +Se SI and +Se control than in the -Se SI and -Se control groups (P<0.05, P<0.01), with evident pathological improvement of the testis tissue in the +Se controls. The expressions of the GPx4 and solute carrier family 7 members 11(SLC7A11) genes in the testis were dramatically down-regulated in the SI model controls (P<0.01), but up-regulated in the +Se SI and +Se control compared with those in the -Se SI and -Se control group (P<0.01 and P<0.05), but there were no statistically significant differences between their protein expressions. The results of in vitro GC2 spd cell experiments indicated that the GPx4 gene and GPx4 protein levels in the - Se group were significantly lower than those in the normal control group (P<0.05), while the SLC7A11 gene level decreased (P<0.01). Different doses of SeS and SeM significantly increased the GPx4 protein expression compared to the average Se group. Low doses of SeM promoted a significant increase in GPx4 gene levels, while high doses of SeS increased the expression levels of SLC7A11 gene and SLC7A11 protein (P<0.05, P<0.01). The Se group showed a significant decrease in the levels of acsl4 and ptgs2 genes compared to the normal control group. SeM promoted the expression of acsl4, while SeS promoted the expression of ptgs2 and fth1 (P<0.01, P<0.05). The intervention results of GC2 spd showed that the Erastin group had a decrease in ptgs2 compared to the normal control group, while the SeS+Erastin and SeM+Erastin groups had an increase in ptgs2 gene expression compared to the Erastin group. However, the ptgs2 expression of Fer-1 was lower than that of the normal control group, and the ptgs2 gene level of SeS+Fer-1 and SeM+Fer-1 groups was lower than that of Fer-1 group (P<0.05); The gene quantity of GPx4 in the SeM+Erastin and SeM+Fer-1 groups increased compared to the Erastin and Fer-1 groups (P<0.01, P<0.05); SeM+Erastin and SeS+Erastin showed a decrease in SLC7A11 compared to the Erastin group, as well as SeM+Fer-1 and SeS+Fer-1 groups compared to the Fer-1 group, accompanied by an increase in acsl4 and fth1 (P<0.01).

Conclusion: Selenium deficiency causes the reduction of the SLC7A11 and GPx4 gene levels, disorder of ferroptosis-related genes and down-regulation of the GPx4 protein expression in the mouse testis and spermatocytes. Selenium can promote the expression of GPx4, up-regulate the level of SLC7A11, and improve spermatogenesis in the testis of the mouse with SI. There are differences between organic SeM and inorganic SeS in regulating the ferroptosis pathway-related genes.

[硒对环磷酰胺诱导的精子发生障碍小鼠精子发生的改善作用及其内在机制]。
目的研究硒对环磷酰胺(CTX)诱导的小鼠生精功能障碍(SI)的影响及其内在机制:将 36 只雄性 KM 小鼠平均随机分为 3 个 SI 模型组和 3 个对照组,前 3 组腹腔注射 100 mg/kg 的 CTX(SI 模型对照组),CTX 加 SI 模型对照组,缺硒模型组(-Se SI)、后 3 组分别为腹腔注射生理盐水(正常对照组)、缺硒对照组(-Se 对照组)、加硒对照组(+Se 对照组),每周一次,连续 6 周。然后用 HE 染色法观察所有小鼠睾丸的组织病理学变化,测定附睾中的精子数量,用 Western 印迹法测定谷胱甘肽过氧化物酶 4(GPx4)和 SLC7A11 蛋白的表达,用 RT-qPCR 法测定铁变态反应相关基因的表达、并研究了用铁氧化抑制剂和诱导剂联合不同浓度的无机亚硒酸钠(SeS)和有机硒蛋氨酸(SeM)处理的 GC2-spd 细胞中铁氧化相关蛋白和基因表达的变化。结果显示与正常对照组相比,SI 模型小鼠的睾丸和前列腺器官系数明显降低,生精层减少,空泡增加,血清铁蛋白浓度(PC)降低:缺硒导致小鼠睾丸和精母细胞中SLC7A11和GPx4基因水平降低,铁氧化相关基因紊乱,GPx4蛋白表达下调。硒能促进 GPx4 的表达,上调 SLC7A11 的水平,改善 SI 小鼠睾丸的精子发生。有机SeM和无机SeS在调控铁氧化途径相关基因方面存在差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
中华男科学杂志
中华男科学杂志 Medicine-Medicine (all)
CiteScore
0.40
自引率
0.00%
发文量
5367
期刊介绍: National journal of andrology was founded in June 1995. It is a core journal of andrology and reproductive medicine, published monthly, and is publicly distributed at home and abroad. The main columns include expert talks, monographs (basic research, clinical research, evidence-based medicine, traditional Chinese medicine), reviews, clinical experience exchanges, case reports, etc. Priority is given to various fund-funded projects, especially the 12th Five-Year National Support Plan and the National Natural Science Foundation funded projects. This journal is included in about 20 domestic databases, including the National Science and Technology Paper Statistical Source Journal (China Science and Technology Core Journal), the Source Journal of the China Science Citation Database, the Statistical Source Journal of the China Academic Journal Comprehensive Evaluation Database (CAJCED), the Full-text Collection Journal of the China Journal Full-text Database (CJFD), the Overview of the Chinese Core Journals (2017 Edition), and the Source Journal of the Top Academic Papers of China's Fine Science and Technology Journals (F5000). It has been included in the full text of the American Chemical Abstracts, the American MEDLINE, the American EBSCO, and the database.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信