Predicting repurposed drugs targeting the NS3 protease of dengue virus using machine learning-based QSAR, molecular docking, and molecular dynamics simulations.

IF 2.3 3区 环境科学与生态学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Y Chongjun, A M S Nasr, M A M Latif, M B A Rahman, E Marlisah, B A Tejo
{"title":"Predicting repurposed drugs targeting the NS3 protease of dengue virus using machine learning-based QSAR, molecular docking, and molecular dynamics simulations.","authors":"Y Chongjun, A M S Nasr, M A M Latif, M B A Rahman, E Marlisah, B A Tejo","doi":"10.1080/1062936X.2024.2392677","DOIUrl":null,"url":null,"abstract":"<p><p>Dengue fever, prevalent in Southeast Asian countries, currently lacks effective pharmaceutical interventions for virus replication control. This study employs a strategy that combines machine learning (ML)-based quantitative-structure-activity relationship (QSAR), molecular docking, and molecular dynamics simulations to discover potential inhibitors of the NS3 protease of the dengue virus. We used nine molecular fingerprints from PaDEL to extract features from the NS3 protease dataset of dengue virus type 2 in the ChEMBL database. Feature selection was achieved through the low variance threshold, F-Score, and recursive feature elimination (RFE) methods. Our investigation employed three ML models - support vector machine (SVM), random forest (RF), and extreme gradient boosting (XGBoost) - for classifier development. Our SVM model, combined with SVM-RFE, had the best accuracy (0.866) and ROC_AUC (0.964) in the testing set. We identified potent inhibitors on the basis of the optimal classifier probabilities and docking binding affinities. SHAP and LIME analyses highlighted the significant molecular fingerprints (e.g. ExtFP69, ExtFP362, ExtFP576) involved in NS3 protease inhibitory activity. Molecular dynamics simulations indicated that amphotericin B exhibited the highest binding energy of -212 kJ/mol and formed a hydrogen bond with the critical residue Ser196. This approach enhances NS3 protease inhibitor identification and expedites the discovery of dengue therapeutics.</p>","PeriodicalId":21446,"journal":{"name":"SAR and QSAR in Environmental Research","volume":" ","pages":"707-728"},"PeriodicalIF":2.3000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAR and QSAR in Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/1062936X.2024.2392677","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Dengue fever, prevalent in Southeast Asian countries, currently lacks effective pharmaceutical interventions for virus replication control. This study employs a strategy that combines machine learning (ML)-based quantitative-structure-activity relationship (QSAR), molecular docking, and molecular dynamics simulations to discover potential inhibitors of the NS3 protease of the dengue virus. We used nine molecular fingerprints from PaDEL to extract features from the NS3 protease dataset of dengue virus type 2 in the ChEMBL database. Feature selection was achieved through the low variance threshold, F-Score, and recursive feature elimination (RFE) methods. Our investigation employed three ML models - support vector machine (SVM), random forest (RF), and extreme gradient boosting (XGBoost) - for classifier development. Our SVM model, combined with SVM-RFE, had the best accuracy (0.866) and ROC_AUC (0.964) in the testing set. We identified potent inhibitors on the basis of the optimal classifier probabilities and docking binding affinities. SHAP and LIME analyses highlighted the significant molecular fingerprints (e.g. ExtFP69, ExtFP362, ExtFP576) involved in NS3 protease inhibitory activity. Molecular dynamics simulations indicated that amphotericin B exhibited the highest binding energy of -212 kJ/mol and formed a hydrogen bond with the critical residue Ser196. This approach enhances NS3 protease inhibitor identification and expedites the discovery of dengue therapeutics.

利用基于机器学习的 QSAR、分子对接和分子动力学模拟预测针对登革热病毒 NS3 蛋白酶的再利用药物。
登革热流行于东南亚国家,目前缺乏有效的药物干预措施来控制病毒复制。本研究采用基于机器学习(ML)的定量-结构-活性关系(QSAR)、分子对接和分子动力学模拟相结合的策略来发现登革热病毒 NS3 蛋白酶的潜在抑制剂。我们使用 PaDEL 的九个分子指纹从 ChEMBL 数据库中的 2 型登革热病毒 NS3 蛋白酶数据集中提取特征。特征选择是通过低方差阈值、F-Score 和递归特征消除(RFE)方法实现的。我们的研究采用了支持向量机(SVM)、随机森林(RF)和极梯度提升(XGBoost)这三种 ML 模型来开发分类器。我们的 SVM 模型与 SVM-RFE 相结合,在测试集中具有最佳的准确率(0.866)和 ROC_AUC(0.964)。我们根据最佳分类器概率和对接结合亲和力确定了强效抑制剂。SHAP 和 LIME 分析强调了参与 NS3 蛋白酶抑制活性的重要分子指纹(如 ExtFP69、ExtFP362 和 ExtFP576)。分子动力学模拟表明,两性霉素 B 的结合能最高,为 -212 kJ/mol,并与关键残基 Ser196 形成氢键。这种方法增强了NS3蛋白酶抑制剂的鉴定,加快了登革热治疗药物的发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.20
自引率
20.00%
发文量
78
审稿时长
>24 weeks
期刊介绍: SAR and QSAR in Environmental Research is an international journal welcoming papers on the fundamental and practical aspects of the structure-activity and structure-property relationships in the fields of environmental science, agrochemistry, toxicology, pharmacology and applied chemistry. A unique aspect of the journal is the focus on emerging techniques for the building of SAR and QSAR models in these widely varying fields. The scope of the journal includes, but is not limited to, the topics of topological and physicochemical descriptors, mathematical, statistical and graphical methods for data analysis, computer methods and programs, original applications and comparative studies. In addition to primary scientific papers, the journal contains reviews of books and software and news of conferences. Special issues on topics of current and widespread interest to the SAR and QSAR community will be published from time to time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信