Modeling construct change over time amidst potential changes in construct measurement: A longitudinal moderated factor analysis approach.

IF 7.6 1区 心理学 Q1 PSYCHOLOGY, MULTIDISCIPLINARY
Siyuan Marco Chen, Daniel J Bauer
{"title":"Modeling construct change over time amidst potential changes in construct measurement: A longitudinal moderated factor analysis approach.","authors":"Siyuan Marco Chen, Daniel J Bauer","doi":"10.1037/met0000685","DOIUrl":null,"url":null,"abstract":"<p><p>In analyzing longitudinal data with growth curve models, a critical assumption is that changes in the observed measures reflect construct changes and not changes in the manifestation of the construct over time. However, growth curve models are often fit to a repeated measure constructed as a sum or mean of scale items, making an implicit assumption of constancy of measurement. This practice risks confounding actual construct change with changes in measurement (i.e., differential item functioning [DIF]), threatening the validity of conclusions. An improved method that avoids such confounding is the second-order growth curve (SGC) model. It specifies a measurement model at each occasion of measurement that can be evaluated for invariance over time. The applicability of the SGC model is hindered by key limitations: (a) the SGC model treats time as continuous when modeling construct growth but as discrete when modeling measurement, reducing interpretability and parsimony; (b) the evaluation of DIF becomes increasingly error-prone given multiple timepoints and groups; (c) DIF associated with continuous covariates is difficult to incorporate. Drawing on moderated nonlinear factor analysis, we propose an alternative approach that provides a parsimonious framework for including many time points and DIF from different types of covariates. We implement this model through Bayesian estimation, allowing for incorporation of regularizing priors to facilitate efficient evaluation of DIF. We demonstrate a two-step workflow of measurement evaluation and growth modeling, with an empirical example examining changes in adolescent delinquency over time. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":" ","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/met0000685","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In analyzing longitudinal data with growth curve models, a critical assumption is that changes in the observed measures reflect construct changes and not changes in the manifestation of the construct over time. However, growth curve models are often fit to a repeated measure constructed as a sum or mean of scale items, making an implicit assumption of constancy of measurement. This practice risks confounding actual construct change with changes in measurement (i.e., differential item functioning [DIF]), threatening the validity of conclusions. An improved method that avoids such confounding is the second-order growth curve (SGC) model. It specifies a measurement model at each occasion of measurement that can be evaluated for invariance over time. The applicability of the SGC model is hindered by key limitations: (a) the SGC model treats time as continuous when modeling construct growth but as discrete when modeling measurement, reducing interpretability and parsimony; (b) the evaluation of DIF becomes increasingly error-prone given multiple timepoints and groups; (c) DIF associated with continuous covariates is difficult to incorporate. Drawing on moderated nonlinear factor analysis, we propose an alternative approach that provides a parsimonious framework for including many time points and DIF from different types of covariates. We implement this model through Bayesian estimation, allowing for incorporation of regularizing priors to facilitate efficient evaluation of DIF. We demonstrate a two-step workflow of measurement evaluation and growth modeling, with an empirical example examining changes in adolescent delinquency over time. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

在构造测量的潜在变化中建立构造随时间变化的模型:纵向调节因子分析方法。
在用成长曲线模型分析纵向数据时,一个重要的假设是观察到的测量结果的变化反映了建构的变化,而不是建构的表现随时间的变化。然而,成长曲线模型通常是与作为量表项目总和或平均值构建的重复测量进行拟合,从而隐含了测量恒定性的假设。这种做法有可能将实际的构念变化与测量变化(即差异项目功能 [DIF])相混淆,从而威胁到结论的有效性。避免这种混淆的改进方法是二阶增长曲线(SGC)模型。它在每次测量时都指定了一个测量模型,该模型可以随着时间的推移进行不变性评估。SGC 模型的适用性受到一些主要限制因素的阻碍:(a) SGC 模型在建立建构增长模型时将时间视为连续的,而在建立测量模型时则将时间视为离散的,从而降低了可解释性和解析性;(b) 由于存在多个时间点和多个组别,DIF 的评估变得越来越容易出错;(c) 与连续协变量相关的 DIF 难以纳入。借鉴缓和非线性因子分析,我们提出了一种替代方法,为纳入多个时间点和不同类型协变量的 DIF 提供了一个简洁的框架。我们通过贝叶斯估计实现了这一模型,允许纳入正则化先验,以促进对 DIF 的有效评估。我们以青少年犯罪随时间变化的经验为例,展示了测量评估和增长建模的两步工作流程。(PsycInfo Database Record (c) 2024 APA, 版权所有)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Psychological methods
Psychological methods PSYCHOLOGY, MULTIDISCIPLINARY-
CiteScore
13.10
自引率
7.10%
发文量
159
期刊介绍: Psychological Methods is devoted to the development and dissemination of methods for collecting, analyzing, understanding, and interpreting psychological data. Its purpose is the dissemination of innovations in research design, measurement, methodology, and quantitative and qualitative analysis to the psychological community; its further purpose is to promote effective communication about related substantive and methodological issues. The audience is expected to be diverse and to include those who develop new procedures, those who are responsible for undergraduate and graduate training in design, measurement, and statistics, as well as those who employ those procedures in research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信