Yiling Zeng, Qi Zhang, Bo Pang, Muyu Liu, Yu Chang, Ye Wang, Hong Quan, Zhiyong Yang
{"title":"Fractionation dose optimization facilities the implementation of transmission proton FLASH-RT.","authors":"Yiling Zeng, Qi Zhang, Bo Pang, Muyu Liu, Yu Chang, Ye Wang, Hong Quan, Zhiyong Yang","doi":"10.1088/1361-6560/ad75e3","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>The beam switching time and fractional dose influence the FLASH effect. A single-beam-per-fraction (SBPF) scheme using uniform fractional dose (UFD) has been proposed for FLASH- radiotherapy (FLASH-RT) to eliminate the beam switching time. Based on SBPF schemes, a fractionation dose optimization algorithm is proposed to optimize non-UFD plans to maximize the fractionation effect and dose-dependent FLASH effect.<i>Approach.</i>The UFD plan, containing five 236 MeV transmission proton beams, was optimized for 11 patients with peripheral lung cancer, with each beam delivering a uniform dose of 11 Gy to the target. Meanwhile, the non-UFD plan was optimized using fractionation dose optimization. To compare the two plans, the equivalent dose to 2 Gy (EQD2) for the target and normal tissues was calculated with an<i>α</i>/<i>β</i>ratio of 10 and 3, respectively. Both UFD and non-UFD plans ensured that the target received an EQD2 of 96.3 Gy. To investigate the overall improvement in normal tissue sparing with the non-UFD plan, the FLASH-enhanced EQD2 was calculated.<i>Main results.</i>The fractional doses in non-UFD plans ranged between 5.0 Gy and 24.2 Gy. No significant differences were found in EQD2<sub>2%</sub>and EQD2<sub>98%</sub>of targets between UFD and non-UFD plans. However, the<i>D</i><sub>95%</sub>of the target in non-UFD plans was significantly reduced by 15.1%. The sparing effect in non-UFD plans was significantly improved. The FLASH-enhanced EQD2<sub>mean</sub>in normal tissue and ipsilateral lung was significantly reduced by 3.5% and 10.4%, respectively, in non-UFD plans. The overall improvement is attributed to both the FLASH and fractionation effects.<i>Significance.</i>The fractionation dose optimization can address the limitation of multiple-beam FLASH-RT and utilize the relationship between fractional dose and FLASH effect. Consequently, the non-UFD scheme results in further improvements in normal tissue sparing compared to the UFD scheme, attributed to enhanced fractionation and FLASH effects.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in medicine and biology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6560/ad75e3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Objective.The beam switching time and fractional dose influence the FLASH effect. A single-beam-per-fraction (SBPF) scheme using uniform fractional dose (UFD) has been proposed for FLASH- radiotherapy (FLASH-RT) to eliminate the beam switching time. Based on SBPF schemes, a fractionation dose optimization algorithm is proposed to optimize non-UFD plans to maximize the fractionation effect and dose-dependent FLASH effect.Approach.The UFD plan, containing five 236 MeV transmission proton beams, was optimized for 11 patients with peripheral lung cancer, with each beam delivering a uniform dose of 11 Gy to the target. Meanwhile, the non-UFD plan was optimized using fractionation dose optimization. To compare the two plans, the equivalent dose to 2 Gy (EQD2) for the target and normal tissues was calculated with anα/βratio of 10 and 3, respectively. Both UFD and non-UFD plans ensured that the target received an EQD2 of 96.3 Gy. To investigate the overall improvement in normal tissue sparing with the non-UFD plan, the FLASH-enhanced EQD2 was calculated.Main results.The fractional doses in non-UFD plans ranged between 5.0 Gy and 24.2 Gy. No significant differences were found in EQD22%and EQD298%of targets between UFD and non-UFD plans. However, theD95%of the target in non-UFD plans was significantly reduced by 15.1%. The sparing effect in non-UFD plans was significantly improved. The FLASH-enhanced EQD2meanin normal tissue and ipsilateral lung was significantly reduced by 3.5% and 10.4%, respectively, in non-UFD plans. The overall improvement is attributed to both the FLASH and fractionation effects.Significance.The fractionation dose optimization can address the limitation of multiple-beam FLASH-RT and utilize the relationship between fractional dose and FLASH effect. Consequently, the non-UFD scheme results in further improvements in normal tissue sparing compared to the UFD scheme, attributed to enhanced fractionation and FLASH effects.
期刊介绍:
The development and application of theoretical, computational and experimental physics to medicine, physiology and biology. Topics covered are: therapy physics (including ionizing and non-ionizing radiation); biomedical imaging (e.g. x-ray, magnetic resonance, ultrasound, optical and nuclear imaging); image-guided interventions; image reconstruction and analysis (including kinetic modelling); artificial intelligence in biomedical physics and analysis; nanoparticles in imaging and therapy; radiobiology; radiation protection and patient dose monitoring; radiation dosimetry