Exploring chaos and ergodic behavior of an inductorless circuit driven by stochastic parameters.

IF 5.2 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Nonlinear Dynamics Pub Date : 2024-01-01 Epub Date: 2024-08-05 DOI:10.1007/s11071-024-10050-x
Soumyajit Seth, Abhijit Bera, Vikram Pakrashi
{"title":"Exploring chaos and ergodic behavior of an inductorless circuit driven by stochastic parameters.","authors":"Soumyajit Seth, Abhijit Bera, Vikram Pakrashi","doi":"10.1007/s11071-024-10050-x","DOIUrl":null,"url":null,"abstract":"<p><p>There exist extensive studies on periodic and random perturbations of various smooth maps investigating their dynamics. Unlike smooth maps, non-smooth maps are yet to be studied extensively under a stochastic regime. This paper presents a stochastic piecewise-smooth map derived from a simple inductorless switching circuit. The stochasticity is introduced in parameter values. The distribution of the parameter values is bounded and randomly selected from uniform and triangular distributions and ranges between high and low bifurcation parameter values of the deterministic map. Due to this inherent stochasticity in parameter values, the time evolution of the state variable cannot be predicted at a specific time instant. We observe that the state variable exhibits completely ergodic behavior when the minimum value of the parameter is the same as the minimum bifurcation parameter of the deterministic system. However, the ensemble average of the state variable converges to a fixed value. The system demonstrates nonchaotic behavior for a particular range of parameter values but the deterministic map in that bifurcation range shows interplay between chaos and periodic orbits. The values of Lyapunov exponents decrease monotonically with increased asymmetry of the distribution from which the bifurcation parameter values are chosen. We determine the probability density function of the stochastic map and verify its invariance under initial conditions. The most noteworthy result is the disappearance of chaotic behavior when the lower range of the distribution is varied while maintaining a fixed upper threshold for a particular distribution, even though the deterministic map exhibits an array of periodic and chaotic behaviors within the range. As the period-incrementing cascade with chaotic inclusion only occurs in nonsmooth maps, this paper numerically shows the stochasticity of a piecewise-smooth map obtained from a practical system for the first time where randomness is introduced in the parameter space.</p>","PeriodicalId":19723,"journal":{"name":"Nonlinear Dynamics","volume":"112 21","pages":"19441-19462"},"PeriodicalIF":5.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11362311/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Dynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11071-024-10050-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

There exist extensive studies on periodic and random perturbations of various smooth maps investigating their dynamics. Unlike smooth maps, non-smooth maps are yet to be studied extensively under a stochastic regime. This paper presents a stochastic piecewise-smooth map derived from a simple inductorless switching circuit. The stochasticity is introduced in parameter values. The distribution of the parameter values is bounded and randomly selected from uniform and triangular distributions and ranges between high and low bifurcation parameter values of the deterministic map. Due to this inherent stochasticity in parameter values, the time evolution of the state variable cannot be predicted at a specific time instant. We observe that the state variable exhibits completely ergodic behavior when the minimum value of the parameter is the same as the minimum bifurcation parameter of the deterministic system. However, the ensemble average of the state variable converges to a fixed value. The system demonstrates nonchaotic behavior for a particular range of parameter values but the deterministic map in that bifurcation range shows interplay between chaos and periodic orbits. The values of Lyapunov exponents decrease monotonically with increased asymmetry of the distribution from which the bifurcation parameter values are chosen. We determine the probability density function of the stochastic map and verify its invariance under initial conditions. The most noteworthy result is the disappearance of chaotic behavior when the lower range of the distribution is varied while maintaining a fixed upper threshold for a particular distribution, even though the deterministic map exhibits an array of periodic and chaotic behaviors within the range. As the period-incrementing cascade with chaotic inclusion only occurs in nonsmooth maps, this paper numerically shows the stochasticity of a piecewise-smooth map obtained from a practical system for the first time where randomness is introduced in the parameter space.

探索由随机参数驱动的无电感电路的混沌和遍历行为。
对各种光滑映射的周期性和随机扰动已有大量研究,对其动力学进行了调查。与光滑映射不同,非光滑映射尚未在随机机制下得到广泛研究。本文介绍了一种由简单的无电感开关电路推导出的随机片断光滑映射。随机性是在参数值中引入的。参数值的分布是有界的、从均匀分布和三角形分布中随机选择的,其范围介于确定性地图的高分岔参数值和低分岔参数值之间。由于参数值固有的随机性,状态变量的时间演变无法在特定时间瞬间预测。我们观察到,当参数的最小值与确定性系统的最小分岔参数相同时,状态变量表现出完全的遍历行为。然而,状态变量的集合平均值会收敛到一个固定值。该系统在特定参数值范围内表现出非混沌行为,但在该分岔范围内的确定性映射显示出混沌与周期轨道之间的相互作用。Lyapunov 指数值随分岔参数值所选分布的不对称程度增加而单调降低。我们确定了随机图的概率密度函数,并验证了它在初始条件下的不变性。最值得注意的结果是,当改变分布的下限范围,同时保持特定分布的固定上限阈值时,混沌行为消失了,尽管确定性图在该范围内表现出一系列周期和混沌行为。由于周期递增级联与混沌包含只出现在非光滑映射中,本文首次在参数空间引入随机性的情况下,通过数值方法展示了从实际系统中获得的片断光滑映射的随机性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nonlinear Dynamics
Nonlinear Dynamics 工程技术-工程:机械
CiteScore
9.00
自引率
17.90%
发文量
966
审稿时长
5.9 months
期刊介绍: Nonlinear Dynamics provides a forum for the rapid publication of original research in the field. The journal’s scope encompasses all nonlinear dynamic phenomena associated with mechanical, structural, civil, aeronautical, ocean, electrical, and control systems. Review articles and original contributions are based on analytical, computational, and experimental methods. The journal examines such topics as perturbation and computational methods, symbolic manipulation, dynamic stability, local and global methods, bifurcations, chaos, and deterministic and random vibrations. The journal also investigates Lie groups, multibody dynamics, robotics, fluid-solid interactions, system modeling and identification, friction and damping models, signal analysis, and measurement techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信