Ammar A. Abdelrahman , Porsche V. Sandow , Jing Wang , Zhimin Xu , Modesto Rojas , John S. Bomalaski , Tahira Lemtalsi , Ruth B. Caldwell , Robert W. Caldwell
{"title":"Arginine deprivation/citrulline augmentation with ADI-PEG20 as novel therapy for complications in type 2 diabetes","authors":"Ammar A. Abdelrahman , Porsche V. Sandow , Jing Wang , Zhimin Xu , Modesto Rojas , John S. Bomalaski , Tahira Lemtalsi , Ruth B. Caldwell , Robert W. Caldwell","doi":"10.1016/j.molmet.2024.102020","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p>Chronic inflammation and oxidative stress mediate the pathological progression of diabetic complications, like diabetic retinopathy (DR), peripheral neuropathy (DPN) and impaired wound healing. Studies have shown that treatment with a stable form of arginase 1 that reduces <span>l</span>-arginine levels and increases ornithine and urea limits retinal injury and improves visual function in DR. We tested the therapeutic efficacy of PEGylated arginine deiminase (ADI-PEG20) that depletes <span>l</span>-arginine and elevates <span>l</span>-citrulline on diabetic complications in the <em>db/db</em> mouse model of type 2 diabetes (T2D).</p></div><div><h3>Methods</h3><p>Mice received intraperitoneal (IP), intramuscular (IM), or intravitreal (IVT) injections of ADI-PEG20 or PEG20 as control. Effects on body weight, fasting blood glucose levels, blood-retinal-barrier (BRB) function, visual acuity, contrast sensitivity, thermal sensitivity, and wound healing were determined. Studies using bone marrow-derived macrophages (BMDM) examined the underlying signaling pathway.</p></div><div><h3>Results</h3><p>Systemic injections of ADI-PEG20 reduced body weight and blood glucose and decreased oxidative stress and inflammation in <em>db/db</em> retinas. These changes were associated with improved BRB and visual function along with thermal sensitivity and wound healing. IVT injections of either ADI-PEG20, anti-VEGF antibody or their combination also improved BRB and visual function. ADI-PEG20 treatment also prevented LPS/IFNℽ-induced activation of BMDM <em>in vitro</em> as did depletion of <span>l</span>-arginine and elevation of <span>l</span>-citrulline.</p></div><div><h3>Conclusions/interpretation</h3><p>ADI-PEG20 treatment limited signs of DR and DPN and enhanced wound healing in <em>db/db</em> mice. Studies using BMDM suggest that the anti-inflammatory effects of ADI-PEG20 involve blockade of the JAK2-STAT1 signaling pathway via <span>l</span>-arginine depletion and <span>l</span>-citrulline production.</p></div>","PeriodicalId":18765,"journal":{"name":"Molecular Metabolism","volume":"89 ","pages":"Article 102020"},"PeriodicalIF":7.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212877824001510/pdfft?md5=c962c8036e363d7ea0bab17c65e01441&pid=1-s2.0-S2212877824001510-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Metabolism","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212877824001510","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
Chronic inflammation and oxidative stress mediate the pathological progression of diabetic complications, like diabetic retinopathy (DR), peripheral neuropathy (DPN) and impaired wound healing. Studies have shown that treatment with a stable form of arginase 1 that reduces l-arginine levels and increases ornithine and urea limits retinal injury and improves visual function in DR. We tested the therapeutic efficacy of PEGylated arginine deiminase (ADI-PEG20) that depletes l-arginine and elevates l-citrulline on diabetic complications in the db/db mouse model of type 2 diabetes (T2D).
Methods
Mice received intraperitoneal (IP), intramuscular (IM), or intravitreal (IVT) injections of ADI-PEG20 or PEG20 as control. Effects on body weight, fasting blood glucose levels, blood-retinal-barrier (BRB) function, visual acuity, contrast sensitivity, thermal sensitivity, and wound healing were determined. Studies using bone marrow-derived macrophages (BMDM) examined the underlying signaling pathway.
Results
Systemic injections of ADI-PEG20 reduced body weight and blood glucose and decreased oxidative stress and inflammation in db/db retinas. These changes were associated with improved BRB and visual function along with thermal sensitivity and wound healing. IVT injections of either ADI-PEG20, anti-VEGF antibody or their combination also improved BRB and visual function. ADI-PEG20 treatment also prevented LPS/IFNℽ-induced activation of BMDM in vitro as did depletion of l-arginine and elevation of l-citrulline.
Conclusions/interpretation
ADI-PEG20 treatment limited signs of DR and DPN and enhanced wound healing in db/db mice. Studies using BMDM suggest that the anti-inflammatory effects of ADI-PEG20 involve blockade of the JAK2-STAT1 signaling pathway via l-arginine depletion and l-citrulline production.
期刊介绍:
Molecular Metabolism is a leading journal dedicated to sharing groundbreaking discoveries in the field of energy homeostasis and the underlying factors of metabolic disorders. These disorders include obesity, diabetes, cardiovascular disease, and cancer. Our journal focuses on publishing research driven by hypotheses and conducted to the highest standards, aiming to provide a mechanistic understanding of energy homeostasis-related behavior, physiology, and dysfunction.
We promote interdisciplinary science, covering a broad range of approaches from molecules to humans throughout the lifespan. Our goal is to contribute to transformative research in metabolism, which has the potential to revolutionize the field. By enabling progress in the prognosis, prevention, and ultimately the cure of metabolic disorders and their long-term complications, our journal seeks to better the future of health and well-being.