Comparative genomic analysis identifies potential adaptive variation in Mycoplasma ovipneumoniae.

IF 4 2区 生物学 Q1 GENETICS & HEREDITY
Kimberly R Andrews, Thomas E Besser, Thibault Stalder, Eva M Top, Katherine N Baker, Matthew W Fagnan, Daniel D New, G Maria Schneider, Alexandra Gal, Rebecca Andrews-Dickert, Samuel S Hunter, Kimberlee B Beckmen, Lauren Christensen, Anne Justice-Allen, Denise Konetchy, Chadwick P Lehman, Kezia Manlove, Hollie Miyasaki, Todd Nordeen, Annette Roug, E Frances Cassirer
{"title":"Comparative genomic analysis identifies potential adaptive variation in <i>Mycoplasma ovipneumoniae</i>.","authors":"Kimberly R Andrews, Thomas E Besser, Thibault Stalder, Eva M Top, Katherine N Baker, Matthew W Fagnan, Daniel D New, G Maria Schneider, Alexandra Gal, Rebecca Andrews-Dickert, Samuel S Hunter, Kimberlee B Beckmen, Lauren Christensen, Anne Justice-Allen, Denise Konetchy, Chadwick P Lehman, Kezia Manlove, Hollie Miyasaki, Todd Nordeen, Annette Roug, E Frances Cassirer","doi":"10.1099/mgen.0.001279","DOIUrl":null,"url":null,"abstract":"<p><p><i>Mycoplasma ovipneumoniae</i> is associated with respiratory disease in wild and domestic Caprinae globally, with wide variation in disease outcomes within and between host species. To gain insight into phylogenetic structure and mechanisms of pathogenicity for this bacterial species, we compared <i>M. ovipneumoniae</i> genomes for 99 samples from 6 countries (Australia, Bosnia and Herzegovina, Brazil, China, France and USA) and 4 host species (domestic sheep, domestic goats, bighorn sheep and caribou). Core genome sequences of <i>M. ovipneumoniae</i> assemblies from domestic sheep and goats fell into two well-supported phylogenetic clades that are divergent enough to be considered different bacterial species, consistent with each of these two clades having an evolutionary origin in separate host species. Genome assemblies from bighorn sheep and caribou also fell within these two clades, indicating multiple spillover events, most commonly from domestic sheep. Pangenome analysis indicated a high percentage (91.4 %) of accessory genes (i.e. genes found only in a subset of assemblies) compared to core genes (i.e. genes found in all assemblies), potentially indicating a propensity for this pathogen to adapt to within-host conditions. In addition, many genes related to carbon metabolism, which is a virulence factor for Mycoplasmas, showed evidence for homologous recombination, a potential signature of adaptation. The presence or absence of annotated genes was very similar between sheep and goat clades, with only two annotated genes significantly clade-associated. However, three <i>M. ovipneumoniae</i> genome assemblies from asymptomatic caribou in Alaska formed a highly divergent subclade within the sheep clade that lacked 23 annotated genes compared to other assemblies, and many of these genes had functions related to carbon metabolism. Overall, our results suggest that adaptation of <i>M. ovipneumoniae</i> has involved evolution of carbon metabolism pathways and virulence mechanisms related to those pathways. The genes involved in these pathways, along with other genes identified as potentially involved in virulence in this study, are potential targets for future investigation into a possible genomic basis for the high variation observed in disease outcomes within and between wild and domestic host species.</p>","PeriodicalId":18487,"journal":{"name":"Microbial Genomics","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11364169/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1099/mgen.0.001279","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Mycoplasma ovipneumoniae is associated with respiratory disease in wild and domestic Caprinae globally, with wide variation in disease outcomes within and between host species. To gain insight into phylogenetic structure and mechanisms of pathogenicity for this bacterial species, we compared M. ovipneumoniae genomes for 99 samples from 6 countries (Australia, Bosnia and Herzegovina, Brazil, China, France and USA) and 4 host species (domestic sheep, domestic goats, bighorn sheep and caribou). Core genome sequences of M. ovipneumoniae assemblies from domestic sheep and goats fell into two well-supported phylogenetic clades that are divergent enough to be considered different bacterial species, consistent with each of these two clades having an evolutionary origin in separate host species. Genome assemblies from bighorn sheep and caribou also fell within these two clades, indicating multiple spillover events, most commonly from domestic sheep. Pangenome analysis indicated a high percentage (91.4 %) of accessory genes (i.e. genes found only in a subset of assemblies) compared to core genes (i.e. genes found in all assemblies), potentially indicating a propensity for this pathogen to adapt to within-host conditions. In addition, many genes related to carbon metabolism, which is a virulence factor for Mycoplasmas, showed evidence for homologous recombination, a potential signature of adaptation. The presence or absence of annotated genes was very similar between sheep and goat clades, with only two annotated genes significantly clade-associated. However, three M. ovipneumoniae genome assemblies from asymptomatic caribou in Alaska formed a highly divergent subclade within the sheep clade that lacked 23 annotated genes compared to other assemblies, and many of these genes had functions related to carbon metabolism. Overall, our results suggest that adaptation of M. ovipneumoniae has involved evolution of carbon metabolism pathways and virulence mechanisms related to those pathways. The genes involved in these pathways, along with other genes identified as potentially involved in virulence in this study, are potential targets for future investigation into a possible genomic basis for the high variation observed in disease outcomes within and between wild and domestic host species.

比较基因组分析确定了卵肺炎支原体的潜在适应性变异。
卵肺炎支原体与全球野生和家养毛冠菊科动物的呼吸道疾病有关,宿主物种内部和宿主物种之间的疾病结果差异很大。为了深入了解这种细菌的系统发育结构和致病机制,我们比较了来自 6 个国家(澳大利亚、波斯尼亚和黑塞哥维那、巴西、中国、法国和美国)和 4 个宿主物种(家养绵羊、家养山羊、北山羊和驯鹿)的 99 个样本的卵肺炎支原体基因组。来自家绵羊和山羊的卵肺炎霉菌的核心基因组序列集合分为两个支持良好的系统发育支系,其差异足以被视为不同的细菌物种,这两个支系分别起源于不同的宿主物种。来自大角羊和驯鹿的基因组也属于这两个支系,这表明存在多个外溢事件,其中最常见的是来自家羊的外溢事件。庞基因组分析表明,与核心基因(即在所有基因组中都能找到的基因)相比,附属基因(即只在部分基因组中发现的基因)的比例较高(91.4%),这可能表明这种病原体有适应宿主内部条件的倾向。此外,许多与碳代谢(支原体的毒力因子)相关的基因都显示出同源重组的迹象,这是适应的一个潜在特征。绵羊支原体和山羊支原体之间存在或不存在注释基因的情况非常相似,只有两个注释基因与支原体明显相关。然而,来自阿拉斯加无症状驯鹿的三个卵肺炎梭菌基因组序列在绵羊支系中形成了一个高度分化的亚支系,与其他序列相比,该亚支系缺少23个注释基因,其中许多基因的功能与碳代谢有关。总之,我们的研究结果表明,卵肺炎霉菌的适应涉及碳代谢途径和与这些途径相关的毒力机制的进化。参与这些途径的基因,以及本研究中发现的可能参与毒力的其他基因,都是未来研究野生宿主和家养宿主物种内部和之间疾病结果差异大的可能基因组基础的潜在目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microbial Genomics
Microbial Genomics Medicine-Epidemiology
CiteScore
6.60
自引率
2.60%
发文量
153
审稿时长
12 weeks
期刊介绍: Microbial Genomics (MGen) is a fully open access, mandatory open data and peer-reviewed journal publishing high-profile original research on archaea, bacteria, microbial eukaryotes and viruses.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信