{"title":"Studying protein–protein interactions: Latest and most popular approaches","authors":"Sama Akbarzadeh , Özlem Coşkun , Başak Günçer","doi":"10.1016/j.jsb.2024.108118","DOIUrl":null,"url":null,"abstract":"<div><p>PPIs, or protein–protein interactions, are essential for many biological processes. According to the findings, abnormal PPIs have been linked to several diseases, such as cancer and infectious and neurological disorders. Consequently, focusing on PPIs is a path toward disease treatment and a crucial tool for producing novel medications. Many methods exist to investigate PPIs, including low- and high-throughput studies. Since many PPIs have been discovered using <em>in vitro</em> and <em>in vivo</em> experimental approaches, the use of computational methods to predict PPIs has grown due to the expanding scale of PPI data and the intrinsic complexity of interacting mechanisms. Recognizing PPI networks offers a systematic means of predicting protein functions, and pathways that are included. These investigations can help uncover the underlying molecular mechanisms of complex phenotypes and clarify the biological processes related to health and diseases. Therefore, our goal in this study is to provide an overview of the latest and most popular approaches for investigating PPIs. We also overview some important clinical approaches based on the PPIs and how these interactions can be targeted.</p></div>","PeriodicalId":17074,"journal":{"name":"Journal of structural biology","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047847724000583","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
PPIs, or protein–protein interactions, are essential for many biological processes. According to the findings, abnormal PPIs have been linked to several diseases, such as cancer and infectious and neurological disorders. Consequently, focusing on PPIs is a path toward disease treatment and a crucial tool for producing novel medications. Many methods exist to investigate PPIs, including low- and high-throughput studies. Since many PPIs have been discovered using in vitro and in vivo experimental approaches, the use of computational methods to predict PPIs has grown due to the expanding scale of PPI data and the intrinsic complexity of interacting mechanisms. Recognizing PPI networks offers a systematic means of predicting protein functions, and pathways that are included. These investigations can help uncover the underlying molecular mechanisms of complex phenotypes and clarify the biological processes related to health and diseases. Therefore, our goal in this study is to provide an overview of the latest and most popular approaches for investigating PPIs. We also overview some important clinical approaches based on the PPIs and how these interactions can be targeted.
PPI,即蛋白质与蛋白质之间的相互作用,对许多生物过程都至关重要。研究结果表明,PPIs 异常与多种疾病有关,如癌症、传染病和神经系统疾病。因此,关注 PPIs 是治疗疾病的一条途径,也是生产新型药物的重要工具。研究 PPIs 的方法很多,包括低通量和高通量研究。由于许多 PPI 都是通过体外和体内实验方法发现的,因此随着 PPI 数据规模的扩大和相互作用机制的内在复杂性,使用计算方法预测 PPI 的情况也越来越多。识别 PPI 网络为预测蛋白质功能及其所包含的途径提供了一种系统方法。这些研究有助于发现复杂表型的潜在分子机制,并阐明与健康和疾病相关的生物学过程。因此,我们在本研究中的目标是概述研究 PPI 的最新和最流行的方法。我们还概述了一些基于 PPIs 的重要临床方法,以及如何针对这些相互作用进行研究。
期刊介绍:
Journal of Structural Biology (JSB) has an open access mirror journal, the Journal of Structural Biology: X (JSBX), sharing the same aims and scope, editorial team, submission system and rigorous peer review. Since both journals share the same editorial system, you may submit your manuscript via either journal homepage. You will be prompted during submission (and revision) to choose in which to publish your article. The editors and reviewers are not aware of the choice you made until the article has been published online. JSB and JSBX publish papers dealing with the structural analysis of living material at every level of organization by all methods that lead to an understanding of biological function in terms of molecular and supermolecular structure.
Techniques covered include:
• Light microscopy including confocal microscopy
• All types of electron microscopy
• X-ray diffraction
• Nuclear magnetic resonance
• Scanning force microscopy, scanning probe microscopy, and tunneling microscopy
• Digital image processing
• Computational insights into structure