Pengyuan Nie , Jinzhong Ning , Mengxuan Lin , Zhihao Yang , Lei Wang
{"title":"SSGU-CD: A combined semantic and structural information graph U-shaped network for document-level Chemical-Disease interaction extraction","authors":"Pengyuan Nie , Jinzhong Ning , Mengxuan Lin , Zhihao Yang , Lei Wang","doi":"10.1016/j.jbi.2024.104719","DOIUrl":null,"url":null,"abstract":"<div><p>Document-level interaction extraction for Chemical-Disease is aimed at inferring the interaction relations between chemical entities and disease entities across multiple sentences. Compared with sentence-level relation extraction, document-level relation extraction can capture the associations between different entities throughout the entire document, which is found to be more practical for biomedical text information. However, current biomedical extraction methods mainly concentrate on sentence-level relation extraction, making it difficult to access the rich structural information contained in documents in practical application scenarios. We put forward SSGU-CD, a combined <strong><u>S</u></strong>emantic and <strong><u>S</u></strong>tructural information <strong><u>G</u></strong>raph <strong><u>U</u></strong>-shaped network for document-level <strong><u>C</u></strong>hemical-<strong><u>D</u></strong>isease interaction extraction. This framework effectively stores document semantic and structure information as graphs and can fuse the original context information of documents. Using the framework, we propose a balanced combination of cross-entropy loss function to facilitate collaborative optimization among models with the aim of enhancing the ability to extract Chemical-Disease interaction relations. We evaluated SSGU-CD on the document-level relation extraction dataset CDR and BioRED, and the results demonstrate that the framework can significantly improve the extraction performance.</p></div>","PeriodicalId":15263,"journal":{"name":"Journal of Biomedical Informatics","volume":"157 ","pages":"Article 104719"},"PeriodicalIF":4.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1532046424001370/pdfft?md5=ccbd03895ffdd2c9164f4a506fad5a18&pid=1-s2.0-S1532046424001370-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Informatics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1532046424001370","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Document-level interaction extraction for Chemical-Disease is aimed at inferring the interaction relations between chemical entities and disease entities across multiple sentences. Compared with sentence-level relation extraction, document-level relation extraction can capture the associations between different entities throughout the entire document, which is found to be more practical for biomedical text information. However, current biomedical extraction methods mainly concentrate on sentence-level relation extraction, making it difficult to access the rich structural information contained in documents in practical application scenarios. We put forward SSGU-CD, a combined Semantic and Structural information Graph U-shaped network for document-level Chemical-Disease interaction extraction. This framework effectively stores document semantic and structure information as graphs and can fuse the original context information of documents. Using the framework, we propose a balanced combination of cross-entropy loss function to facilitate collaborative optimization among models with the aim of enhancing the ability to extract Chemical-Disease interaction relations. We evaluated SSGU-CD on the document-level relation extraction dataset CDR and BioRED, and the results demonstrate that the framework can significantly improve the extraction performance.
期刊介绍:
The Journal of Biomedical Informatics reflects a commitment to high-quality original research papers, reviews, and commentaries in the area of biomedical informatics methodology. Although we publish articles motivated by applications in the biomedical sciences (for example, clinical medicine, health care, population health, and translational bioinformatics), the journal emphasizes reports of new methodologies and techniques that have general applicability and that form the basis for the evolving science of biomedical informatics. Articles on medical devices; evaluations of implemented systems (including clinical trials of information technologies); or papers that provide insight into a biological process, a specific disease, or treatment options would generally be more suitable for publication in other venues. Papers on applications of signal processing and image analysis are often more suitable for biomedical engineering journals or other informatics journals, although we do publish papers that emphasize the information management and knowledge representation/modeling issues that arise in the storage and use of biological signals and images. System descriptions are welcome if they illustrate and substantiate the underlying methodology that is the principal focus of the report and an effort is made to address the generalizability and/or range of application of that methodology. Note also that, given the international nature of JBI, papers that deal with specific languages other than English, or with country-specific health systems or approaches, are acceptable for JBI only if they offer generalizable lessons that are relevant to the broad JBI readership, regardless of their country, language, culture, or health system.