Identification of genes contributing to attenuation of rat model of galactose-induced cataract by pyruvate

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Fuuga Masuda, Mayumi Inami, Yoshihiro Takamura, Masaru Inatani, Masaya Oki
{"title":"Identification of genes contributing to attenuation of rat model of galactose-induced cataract by pyruvate","authors":"Fuuga Masuda,&nbsp;Mayumi Inami,&nbsp;Yoshihiro Takamura,&nbsp;Masaru Inatani,&nbsp;Masaya Oki","doi":"10.1111/gtc.13150","DOIUrl":null,"url":null,"abstract":"<p>Cataracts are a disease that reduces vision due to opacity formation of the lens. Diabetic cataracts occur at young age and progress relatively quickly, so the development of effective treatment has been awaited. Several studies have shown that pyruvate inhibits oxidative stress and glycation of lens proteins, which contribute to onset of diabetic cataracts. However, detailed molecular mechanisms have not been revealed. In this study, we attempted to reduce galactose-induced opacity by pyruvate with rat ex vivo model. Rat lenses were extracted and cultured in galactose-containing medium to induce lens opacity. After opacity had developed, continued culturing with pyruvate in the medium resulted in a reduction of lens opacity. Subsequently, we conducted microarray analysis to investigate the genes that contribute to the therapeutic effect. We performed quantitative expression measurements using RT-qPCR for extracted genes that were upregulated in cataract-induced lenses and downregulated in pyruvate-treated lenses, resulting in the identification of 34 candidate genes. Functional analysis using the STRING database suggests that metallothionein-related factors (<i>Mt1a</i>, <i>Mt1m</i>, and <i>Mt2A</i>) and epithelial-mesenchymal transition-related factors (<i>Acta2</i>, <i>Anxa1</i>, <i>Cd81</i>, <i>Mki67</i>, <i>Timp1</i>, and <i>Tyms</i>) contribute to the therapeutic effect of cataracts.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gtc.13150","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gtc.13150","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Cataracts are a disease that reduces vision due to opacity formation of the lens. Diabetic cataracts occur at young age and progress relatively quickly, so the development of effective treatment has been awaited. Several studies have shown that pyruvate inhibits oxidative stress and glycation of lens proteins, which contribute to onset of diabetic cataracts. However, detailed molecular mechanisms have not been revealed. In this study, we attempted to reduce galactose-induced opacity by pyruvate with rat ex vivo model. Rat lenses were extracted and cultured in galactose-containing medium to induce lens opacity. After opacity had developed, continued culturing with pyruvate in the medium resulted in a reduction of lens opacity. Subsequently, we conducted microarray analysis to investigate the genes that contribute to the therapeutic effect. We performed quantitative expression measurements using RT-qPCR for extracted genes that were upregulated in cataract-induced lenses and downregulated in pyruvate-treated lenses, resulting in the identification of 34 candidate genes. Functional analysis using the STRING database suggests that metallothionein-related factors (Mt1a, Mt1m, and Mt2A) and epithelial-mesenchymal transition-related factors (Acta2, Anxa1, Cd81, Mki67, Timp1, and Tyms) contribute to the therapeutic effect of cataracts.

Abstract Image

鉴定有助于减轻丙酮酸葡萄糖诱发白内障大鼠模型的基因。
白内障是一种由于晶状体形成混浊而导致视力下降的疾病。糖尿病性白内障发病年龄小,病情发展相对较快,因此人们一直在等待开发出有效的治疗方法。一些研究表明,丙酮酸能抑制氧化应激和晶状体蛋白质的糖化,而氧化应激和糖化是导致糖尿病性白内障发病的原因。然而,详细的分子机制尚未揭示。在本研究中,我们尝试用大鼠体内外模型来减少丙酮酸引发的半乳糖性白内障。提取大鼠晶状体并在含半乳糖的培养基中培养,以诱导晶状体混浊。翳形成后,继续在培养基中加入丙酮酸培养,可减少晶状体翳。随后,我们进行了微阵列分析,以研究促成治疗效果的基因。我们使用 RT-qPCR 对提取的基因进行了定量表达测量,这些基因在白内障诱导的晶状体中上调,而在丙酮酸处理的晶状体中下调,最终确定了 34 个候选基因。利用 STRING 数据库进行的功能分析表明,金属硫蛋白相关因子(Mt1a、Mt1m 和 Mt2A)和上皮-间质转化相关因子(Acta2、Anxa1、Cd81、Mki67、Timp1 和 Tyms)有助于白内障的治疗效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信