{"title":"Hydrogen regulated pyroptosis through NLRP3-GSDMD pathway to improve airway mucosal oxidative stress injury induced by endotracheal tube cuff compression","authors":"","doi":"10.1016/j.freeradbiomed.2024.08.035","DOIUrl":null,"url":null,"abstract":"<div><p>The cuff of endotracheal tube (ETT) is an indispensable device for establishing an artificial airway, yet cuff-induced compression often causes damage to the airway mucosa. The mechanism of this damage involves mucosal compression ischemia and the oxidative stress injury following reperfusion. Currently, there is a lack of effective strategies to protect the mucosa. Hydrogen, as a natural antioxidant, has demonstrated significant potential in the prevention and treatment of oxidative stress injuries. This study aimed to determine the protective effects of hydrogen on compressed airway mucosa. We found that the damage to the airway mucosa caused by ETT cuff compression was associated with oxidative stress-induced pyroptosis of airway epithelial cells. Inhalation of hydrogen effectively reduced the levels of reactive oxygen species, significantly ameliorating changes in epithelial cell pyroptosis, and this protective effect is linked to the inhibition of the NLRP3-GSDMD pathway. Further cellular studies, involving knockdown and overexpression of NLRP3, clarified that hydrogen exerts its protective effects on the airway mucosa by inhibiting epithelial cell pyroptosis. Additionally, we observed that using hydrogen-rich saline to inflate the ETT cuff in patients under general anesthesia significantly reduced postoperative sore throat. This study confirms that hydrogen effectively enhances tolerance of airway mucosa to oxidative stress injuries, offering a potential preventive and therapeutic strategy for protecting the airway mucosa in patients undergoing endotracheal intubation.</p></div>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0891584924006294","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The cuff of endotracheal tube (ETT) is an indispensable device for establishing an artificial airway, yet cuff-induced compression often causes damage to the airway mucosa. The mechanism of this damage involves mucosal compression ischemia and the oxidative stress injury following reperfusion. Currently, there is a lack of effective strategies to protect the mucosa. Hydrogen, as a natural antioxidant, has demonstrated significant potential in the prevention and treatment of oxidative stress injuries. This study aimed to determine the protective effects of hydrogen on compressed airway mucosa. We found that the damage to the airway mucosa caused by ETT cuff compression was associated with oxidative stress-induced pyroptosis of airway epithelial cells. Inhalation of hydrogen effectively reduced the levels of reactive oxygen species, significantly ameliorating changes in epithelial cell pyroptosis, and this protective effect is linked to the inhibition of the NLRP3-GSDMD pathway. Further cellular studies, involving knockdown and overexpression of NLRP3, clarified that hydrogen exerts its protective effects on the airway mucosa by inhibiting epithelial cell pyroptosis. Additionally, we observed that using hydrogen-rich saline to inflate the ETT cuff in patients under general anesthesia significantly reduced postoperative sore throat. This study confirms that hydrogen effectively enhances tolerance of airway mucosa to oxidative stress injuries, offering a potential preventive and therapeutic strategy for protecting the airway mucosa in patients undergoing endotracheal intubation.
期刊介绍:
Free Radical Biology and Medicine is a leading journal in the field of redox biology, which is the study of the role of reactive oxygen species (ROS) and other oxidizing agents in biological systems. The journal serves as a premier forum for publishing innovative and groundbreaking research that explores the redox biology of health and disease, covering a wide range of topics and disciplines. Free Radical Biology and Medicine also commissions Special Issues that highlight recent advances in both basic and clinical research, with a particular emphasis on the mechanisms underlying altered metabolism and redox signaling. These Special Issues aim to provide a focused platform for the latest research in the field, fostering collaboration and knowledge exchange among researchers and clinicians.