CYP8B1 Catalyzes 12alpha-Hydroxylation of C27 Bile Acid: In Vitro Conversion of Dihydroxycoprostanic Acid into Trihydroxycoprostanic Acid.

IF 4.4 3区 医学 Q1 PHARMACOLOGY & PHARMACY
Yutong Wang, Yixuan Wang, YiTing Hu, QingLiang Wu, Lanlan Gui, Wushuang Zeng, Qi Chen, Tingting Yu, Xinjie Zhang, Ke Lan
{"title":"CYP8B1 Catalyzes 12alpha-Hydroxylation of C<sub>27</sub> Bile Acid: In Vitro Conversion of Dihydroxycoprostanic Acid into Trihydroxycoprostanic Acid.","authors":"Yutong Wang, Yixuan Wang, YiTing Hu, QingLiang Wu, Lanlan Gui, Wushuang Zeng, Qi Chen, Tingting Yu, Xinjie Zhang, Ke Lan","doi":"10.1124/dmd.124.001694","DOIUrl":null,"url":null,"abstract":"<p><p>Sterol 12α-hydroxylase (CYP8B1) is the unique P450 enzyme with sterol 12-oxidation activity, playing an exclusive role in 12<i>α</i>-hydroxylating intermediates along the bile acid (BA) synthesis pathway. Despite the long history of BA metabolism studies, it is unclear whether CYP8B1 catalyzes 12<i>α</i>-hydroxylation of C<sub>27</sub> BAs, the key intermediates shuttling between mitochondria and peroxisomes. This work provides robust in vitro evidence that both microsomal and recombinant CYP8B1 enzymes catalyze the 12<i>α</i>-hydroxylation of dihydroxycoprostanic acid (DHCA) into trihydroxycoprostanic acid (THCA). On the one hand, DHCA 12<i>α</i>-hydroxylation reactivity is conservatively detected in liver microsomes of both human and preclinical animals. The reactivity of human tissue fractions conforms well with the selectivity of CYP8B1 mRNA expression, while the contribution of P450 enzymes other than CYP8B1 is excluded by reaction phenotyping in commercial recombinant enzymes. On the other hand, we prepared functional recombinant human CYP8B1 proteins according to a recently published protocol. Titration of the purified CYP8B1 proteins with either C4 (7<i>α</i>-hydroxy-4-cholesten-3-one) or DHCA yields expected blue shifts of the heme Soret peak (type I binding). The recombinant CYP8B1 proteins efficiently catalyze 12<i>α</i>-hydroxylation of both DHCA and C4, with substrate concentration occupying half of the binding sites of 3.0 and 1.9 <i>μ</i>M and k<sub>cat</sub> of 3.2 and 2.6 minutes<sup>-1</sup>, respectively. In summary, the confirmed role of CYP8B1 in 12<i>α</i>-hydroxylation of C<sub>27</sub> BAs has furnished the forgotten passageway in the BA synthesis pathway. The present finding might have opened a new window to consider the biology of CYP8B1 in glucolipid metabolism and to evaluate CYP8B1 inhibition as a therapeutic approach of crucial interest for metabolic diseases. SIGNIFICANCE STATEMENT: The academic community has spent approximately 90 years interpreting the synthesis of bile acids. However, the 12<i>α</i>-hydroxylation of intermediates catalyzed by CYP8B1 is not completely mapped on the classic pathway, particularly for the C<sub>27</sub> bile acids, the pivotal intermediates shuttling between mitochondria and peroxisomes. This work discloses the forgotten 12<i>α</i>-hydroxylation pathway from dihydroxycoprostanic acid into trihydroxycoprostanic acid. The present finding may facilitate evaluating CYP8B1 inhibition as a therapeutic approach of crucial interest for metabolic diseases.</p>","PeriodicalId":11309,"journal":{"name":"Drug Metabolism and Disposition","volume":" ","pages":"1234-1243"},"PeriodicalIF":4.4000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Metabolism and Disposition","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1124/dmd.124.001694","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Sterol 12α-hydroxylase (CYP8B1) is the unique P450 enzyme with sterol 12-oxidation activity, playing an exclusive role in 12α-hydroxylating intermediates along the bile acid (BA) synthesis pathway. Despite the long history of BA metabolism studies, it is unclear whether CYP8B1 catalyzes 12α-hydroxylation of C27 BAs, the key intermediates shuttling between mitochondria and peroxisomes. This work provides robust in vitro evidence that both microsomal and recombinant CYP8B1 enzymes catalyze the 12α-hydroxylation of dihydroxycoprostanic acid (DHCA) into trihydroxycoprostanic acid (THCA). On the one hand, DHCA 12α-hydroxylation reactivity is conservatively detected in liver microsomes of both human and preclinical animals. The reactivity of human tissue fractions conforms well with the selectivity of CYP8B1 mRNA expression, while the contribution of P450 enzymes other than CYP8B1 is excluded by reaction phenotyping in commercial recombinant enzymes. On the other hand, we prepared functional recombinant human CYP8B1 proteins according to a recently published protocol. Titration of the purified CYP8B1 proteins with either C4 (7α-hydroxy-4-cholesten-3-one) or DHCA yields expected blue shifts of the heme Soret peak (type I binding). The recombinant CYP8B1 proteins efficiently catalyze 12α-hydroxylation of both DHCA and C4, with substrate concentration occupying half of the binding sites of 3.0 and 1.9 μM and kcat of 3.2 and 2.6 minutes-1, respectively. In summary, the confirmed role of CYP8B1 in 12α-hydroxylation of C27 BAs has furnished the forgotten passageway in the BA synthesis pathway. The present finding might have opened a new window to consider the biology of CYP8B1 in glucolipid metabolism and to evaluate CYP8B1 inhibition as a therapeutic approach of crucial interest for metabolic diseases. SIGNIFICANCE STATEMENT: The academic community has spent approximately 90 years interpreting the synthesis of bile acids. However, the 12α-hydroxylation of intermediates catalyzed by CYP8B1 is not completely mapped on the classic pathway, particularly for the C27 bile acids, the pivotal intermediates shuttling between mitochondria and peroxisomes. This work discloses the forgotten 12α-hydroxylation pathway from dihydroxycoprostanic acid into trihydroxycoprostanic acid. The present finding may facilitate evaluating CYP8B1 inhibition as a therapeutic approach of crucial interest for metabolic diseases.

CYP8B1 催化 C27 胆汁酸的 12α- 羟基化:体外将二羟基丙烷酸转化为三羟基丙烷酸。
CYP8B1 是具有甾醇 12-oxidation 活性的独特 P450 酶,在胆汁酸(BA)合成途径中扮演 12α-hydroxylating 中间体的专属角色。尽管对 BA 代谢的研究由来已久,但目前还不清楚 CYP8B1 是否催化 C27 BA 的 12α- 羟基化,而 C27 BA 是在线粒体和过氧化物酶体之间穿梭的关键中间产物。这项工作提供了强有力的体外证据,证明微粒体和重组 CYP8B1 酶都能催化二羟基前胡烷酸(DHCA)12α-羟基化为三羟基前胡烷酸(THCA)。一方面,在人类和临床前动物的肝脏微粒体中都能保守地检测到 DHCA 12α- 羟基化反应。人体组织分馏物的反应性与 CYP8B1 mRNA 表达的选择性非常吻合,而商业重组酶的反应表型排除了 CYP8B1 以外的 P450 酶的贡献。另一方面,我们根据最近公布的方案制备了功能性重组人 CYP8B1 蛋白。用 C4(7α-羟基-4-胆甾烯-3-酮)或 DHCA 滴定纯化的 CYP8B1 蛋白,会产生预期的血红素 Soret 峰蓝移(I 型结合)。重组 CYP8B1 蛋白可高效催化 DHCA 和 C4 的 12α- 羟基化,其 Km 分别为 3.0 和 1.9 μM,kcat 分别为 3.2 和 2.6 min-1。总之,CYP8B1 在 C27 BA 的 12α- 羟基化过程中的作用已被证实,这为 BA 合成途径提供了一条被遗忘的通道。本发现可能为研究 CYP8B1 在糖脂代谢中的生物学作用以及评估抑制 CYP8B1 作为代谢性疾病治疗方法的重要意义打开了一扇新窗口。意义声明 学术界用了大约 90 年的时间解释胆汁酸的合成。然而,由 CYP8B1 催化的 12α- 羟基化中间产物并没有完全映射到经典途径上,尤其是 C27 胆汁酸,它们是在线粒体和过氧化物酶体之间穿梭的关键中间产物。这项工作揭示了从二羟基丙烷酸到三羟基丙烷酸的被遗忘的 12α- 羟基化途径。这一发现可能有助于将 CYP8B1 抑制作为治疗代谢性疾病的重要方法进行评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
12.80%
发文量
128
审稿时长
3 months
期刊介绍: An important reference for all pharmacology and toxicology departments, DMD is also a valuable resource for medicinal chemists involved in drug design and biochemists with an interest in drug metabolism, expression of drug metabolizing enzymes, and regulation of drug metabolizing enzyme gene expression. Articles provide experimental results from in vitro and in vivo systems that bring you significant and original information on metabolism and disposition of endogenous and exogenous compounds, including pharmacologic agents and environmental chemicals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信