Root Anatomical Imaging and Phenotyping in Maize.

Jagdeep Singh Sidhu, Hannah M Schneider
{"title":"Root Anatomical Imaging and Phenotyping in Maize.","authors":"Jagdeep Singh Sidhu, Hannah M Schneider","doi":"10.1101/pdb.top108454","DOIUrl":null,"url":null,"abstract":"<p><p>Root anatomy plays a crucial role in regulating essential processes such as the absorption and movement of water and nutrients in plants. Root anatomy also impacts the energy costs of building and sustaining root tissues, tissue mechanics, and interactions with other organisms. Although several studies in maize have confirmed the functional utility of numerous root anatomical traits, such as that of cortical cell size and number for stress adaptation, there have been significant obstacles in measuring and analyzing root anatomical characteristics. This has resulted in gaps in our understanding of the genetic control and range of phenotypic variations among different cultivars, and how this diversity relates to overall fitness. Here, we review root anatomical phenotypes in maize and their function in stress adaptation, and briefly discuss phenotyping methods available for root anatomy. We further introduce a simple and accessible phenotyping approach that enables a comprehensive investigation of maize root anatomy. Detailed characterization of root traits and the implementation of robust methods for root anatomical phenotyping could have wide-ranging benefits across various areas of plant science, from fundamental research to enhancing crop breeding efforts.</p>","PeriodicalId":10496,"journal":{"name":"Cold Spring Harbor protocols","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Spring Harbor protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/pdb.top108454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Root anatomy plays a crucial role in regulating essential processes such as the absorption and movement of water and nutrients in plants. Root anatomy also impacts the energy costs of building and sustaining root tissues, tissue mechanics, and interactions with other organisms. Although several studies in maize have confirmed the functional utility of numerous root anatomical traits, such as that of cortical cell size and number for stress adaptation, there have been significant obstacles in measuring and analyzing root anatomical characteristics. This has resulted in gaps in our understanding of the genetic control and range of phenotypic variations among different cultivars, and how this diversity relates to overall fitness. Here, we review root anatomical phenotypes in maize and their function in stress adaptation, and briefly discuss phenotyping methods available for root anatomy. We further introduce a simple and accessible phenotyping approach that enables a comprehensive investigation of maize root anatomy. Detailed characterization of root traits and the implementation of robust methods for root anatomical phenotyping could have wide-ranging benefits across various areas of plant science, from fundamental research to enhancing crop breeding efforts.

玉米根部解剖成像和表型分析
根系解剖学在调节植物水分和养分的吸收和移动等基本过程中起着至关重要的作用。根系解剖结构还影响构建和维持根系组织的能量成本、组织力学以及与其他生物的相互作用。尽管对玉米的多项研究证实了许多根系解剖特征的功能效用,如皮层细胞大小和数量对胁迫适应的作用,但在测量和分析根系解剖特征方面一直存在重大障碍。这导致我们对不同栽培品种之间表型变异的遗传控制和范围,以及这种多样性与总体适应性之间关系的理解存在差距。在此,我们回顾了玉米根系解剖表型及其在胁迫适应中的功能,并简要讨论了根系解剖表型的可用方法。我们进一步介绍了一种简单易行的表型方法,该方法可对玉米根系解剖进行全面研究。根系性状的详细表征和根系解剖表型的稳健方法的实施可在植物科学的各个领域产生广泛的益处,从基础研究到加强作物育种工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cold Spring Harbor protocols
Cold Spring Harbor protocols Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
3.00
自引率
0.00%
发文量
163
期刊介绍: Cold Spring Harbor Laboratory is renowned for its teaching of biomedical research techniques. For decades, participants in its celebrated, hands-on courses and users of its laboratory manuals have gained access to the most authoritative and reliable methods in molecular and cellular biology. Now that access has moved online. Cold Spring Harbor Protocols is an interdisciplinary journal providing a definitive source of research methods in cell, developmental and molecular biology, genetics, bioinformatics, protein science, computational biology, immunology, neuroscience and imaging. Each monthly issue details multiple essential methods—a mix of cutting-edge and well-established techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信