Discovery of natural product derivative triptolidiol as a direct NLRP3 inhibitor by reducing K63-specific ubiquitination.

IF 6.8 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Mo-Yu Ding, Chengqing Ning, Shao-Ru Chen, Hao-Ran Yin, Jing Xu, Ying Wang
{"title":"Discovery of natural product derivative triptolidiol as a direct NLRP3 inhibitor by reducing K63-specific ubiquitination.","authors":"Mo-Yu Ding, Chengqing Ning, Shao-Ru Chen, Hao-Ran Yin, Jing Xu, Ying Wang","doi":"10.1111/bph.17320","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and purpose: </strong>NLRP3 is up-regulated in inflammatory and autoimmune diseases. The development of NLRP3 inhibitors is challenged by the identification of compounds with distinct mechanisms of action avoiding side effects and toxicity. Triptolide is a natural product with multiple anti-inflammatory activities, but a narrow therapeutic window.</p><p><strong>Experimental approach: </strong>Natural product triptolide derivatives were screened for NLRP3 inhibitors in human THP-1 and mouse bone marrow-derived macrophages. The efficacy of potent NLRP3 inhibitors was evaluated in LPS-induced acute lung injury and septic shock models.</p><p><strong>Key results: </strong>Triptolidiol was identified as a selective inhibitor of NLRP3 with high potency. Triptolidiol inactivated the NLRP3 inflammasome in human THP-1 and mouse primary macrophages primed with LPS. Triptolidiol specifically inhibited pro-caspase 1 cleavage downstream of NLRP3, but not AIM2 or NLRC4 inflammasomes. Based on the structure-activity relationship study, the C8-β-OH group was critical for its binding to NLRP3. Triptolidiol exhibited a submicromolar K<sub>D</sub> for NLRP3, binding to residue C280. This binding prevented the interaction of NLRP3 with NEK7, the key regulator of NLRP3 inflammasome oligomerization and assembly, but not with the inflammasome adaptor protein ASC. Triptolidiol decreased the K63-specific ubiquitination of NLRP3, leading NLRP3 to a \"closed\" inactive conformation. Intraperitoneal administration of triptolidiol significantly attenuated LPS-induced acute lung injury and lethal septic shock.</p><p><strong>Conclusion and implications: </strong>Triptolidiol is a novel NLRP3 inhibitor that regulates inflammasome assembly and activation by decreasing K63-linked ubiquitination. Triptolidiol has novel structural features that make it distinct from reported NLRP3 inhibitors and represents a viable therapeutic lead for inflammatory diseases.</p>","PeriodicalId":9262,"journal":{"name":"British Journal of Pharmacology","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/bph.17320","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Background and purpose: NLRP3 is up-regulated in inflammatory and autoimmune diseases. The development of NLRP3 inhibitors is challenged by the identification of compounds with distinct mechanisms of action avoiding side effects and toxicity. Triptolide is a natural product with multiple anti-inflammatory activities, but a narrow therapeutic window.

Experimental approach: Natural product triptolide derivatives were screened for NLRP3 inhibitors in human THP-1 and mouse bone marrow-derived macrophages. The efficacy of potent NLRP3 inhibitors was evaluated in LPS-induced acute lung injury and septic shock models.

Key results: Triptolidiol was identified as a selective inhibitor of NLRP3 with high potency. Triptolidiol inactivated the NLRP3 inflammasome in human THP-1 and mouse primary macrophages primed with LPS. Triptolidiol specifically inhibited pro-caspase 1 cleavage downstream of NLRP3, but not AIM2 or NLRC4 inflammasomes. Based on the structure-activity relationship study, the C8-β-OH group was critical for its binding to NLRP3. Triptolidiol exhibited a submicromolar KD for NLRP3, binding to residue C280. This binding prevented the interaction of NLRP3 with NEK7, the key regulator of NLRP3 inflammasome oligomerization and assembly, but not with the inflammasome adaptor protein ASC. Triptolidiol decreased the K63-specific ubiquitination of NLRP3, leading NLRP3 to a "closed" inactive conformation. Intraperitoneal administration of triptolidiol significantly attenuated LPS-induced acute lung injury and lethal septic shock.

Conclusion and implications: Triptolidiol is a novel NLRP3 inhibitor that regulates inflammasome assembly and activation by decreasing K63-linked ubiquitination. Triptolidiol has novel structural features that make it distinct from reported NLRP3 inhibitors and represents a viable therapeutic lead for inflammatory diseases.

Abstract Image

通过减少 K63 特异性泛素化,发现天然产物衍生物 triptolidiol 可直接作为 NLRP3 抑制剂。
背景和目的:NLRP3 在炎症和自身免疫性疾病中上调。开发 NLRP3 抑制剂面临的挑战是找到具有独特作用机制、避免副作用和毒性的化合物。雷公藤内酯是一种天然产物,具有多种抗炎活性,但治疗窗口较窄:实验方法:在人类 THP-1 和小鼠骨髓衍生巨噬细胞中筛选天然产品曲托内酯衍生物作为 NLRP3 抑制剂。在 LPS 诱导的急性肺损伤和脓毒性休克模型中评估了强效 NLRP3 抑制剂的疗效:主要结果:经鉴定,Triptolidiol 是一种高效的 NLRP3 选择性抑制剂。Triptolidiol能使LPS诱导的人THP-1和小鼠原代巨噬细胞中的NLRP3炎性体失活。Triptolidiol 可特异性抑制 NLRP3 下游的促天冬酶 1 的裂解,但不能抑制 AIM2 或 NLRC4 炎症体。根据结构-活性关系研究,C8-β-OH基团是其与NLRP3结合的关键。Triptolidiol 与 NLRP3 的 KD 值为亚摩尔,与残基 C280 结合。这种结合阻止了 NLRP3 与 NEK7(NLRP3 炎症小体寡聚和组装的关键调节因子)的相互作用,但没有阻止 NLRP3 与炎症小体适配蛋白 ASC 的相互作用。Triptolidiol减少了NLRP3的K63特异性泛素化,导致NLRP3处于 "封闭 "的非活性构象。腹腔注射三唑醇能显著减轻LPS诱导的急性肺损伤和致死性脓毒性休克:Triptolidiol是一种新型NLRP3抑制剂,可通过减少K63连接的泛素化来调节炎性体的组装和激活。Triptolidiol 具有新颖的结构特征,使其有别于已报道的 NLRP3 抑制剂,是治疗炎症性疾病的可行药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
15.40
自引率
12.30%
发文量
270
审稿时长
2.0 months
期刊介绍: The British Journal of Pharmacology (BJP) is a biomedical science journal offering comprehensive international coverage of experimental and translational pharmacology. It publishes original research, authoritative reviews, mini reviews, systematic reviews, meta-analyses, databases, letters to the Editor, and commentaries. Review articles, databases, systematic reviews, and meta-analyses are typically commissioned, but unsolicited contributions are also considered, either as standalone papers or part of themed issues. In addition to basic science research, BJP features translational pharmacology research, including proof-of-concept and early mechanistic studies in humans. While it generally does not publish first-in-man phase I studies or phase IIb, III, or IV studies, exceptions may be made under certain circumstances, particularly if results are combined with preclinical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信