Designing and validating a clinical decision support algorithm for diabetic nephroprotection in older patients.

IF 4.1 Q1 HEALTH CARE SCIENCES & SERVICES
Noor Alsalemi, Cheryl Sadowski, Naoual Elftouh, Kelley Kilpatrick, Sherylin Houle, Simon Leclerc, Nicolas Fernandez, Jean-Philippe Lafrance
{"title":"Designing and validating a clinical decision support algorithm for diabetic nephroprotection in older patients.","authors":"Noor Alsalemi, Cheryl Sadowski, Naoual Elftouh, Kelley Kilpatrick, Sherylin Houle, Simon Leclerc, Nicolas Fernandez, Jean-Philippe Lafrance","doi":"10.1136/bmjhci-2023-100869","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Older patients with diabetic kidney disease (DKD) often do not receive optimal pharmacological treatment. Current clinical practice guidelines (CPGs) do not incorporate the concept of personalised care. Clinical decision support (CDS) algorithms that consider both evidence and personalised care to improve patient outcomes can improve the care of older adults. The aim of this research is to design and validate a CDS algorithm for prescribing renin-angiotensin-aldosterone system inhibitors (RAASi) for older patients with diabetes.</p><p><strong>Methods: </strong>The design of the CDS tool included the following phases: (1) gathering evidence from systematic reviews and meta-analyses of randomised clinical trials to determine the number needed to treat (NNT) and time-to-benefit (TTB) values applicable to our target population for use in the algorithm. (2) Building a list of potential cases that addressed different prescribing scenarios (starting, adding or switching to RAASi). (3) Reviewing relevant guidelines and extracting all recommendations related to prescribing RAASi for DKD. (4) Matching NNT and TTB with specific clinical cases. (5) Validating the CDS algorithm using Delphi technique.</p><p><strong>Results: </strong>We created a CDS algorithm that covered 15 possible scenarios and we generated 36 personalised and nine general recommendations based on the calculated and matched NNT and TTB values and considering the patient's life expectancy and functional capacity. The algorithm was validated by experts in three rounds of Delphi study.</p><p><strong>Conclusion: </strong>We designed an evidence-informed CDS algorithm that integrates considerations often overlooked in CPGs. The next steps include testing the CDS algorithm in a clinical trial.</p>","PeriodicalId":9050,"journal":{"name":"BMJ Health & Care Informatics","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11367403/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMJ Health & Care Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1136/bmjhci-2023-100869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Older patients with diabetic kidney disease (DKD) often do not receive optimal pharmacological treatment. Current clinical practice guidelines (CPGs) do not incorporate the concept of personalised care. Clinical decision support (CDS) algorithms that consider both evidence and personalised care to improve patient outcomes can improve the care of older adults. The aim of this research is to design and validate a CDS algorithm for prescribing renin-angiotensin-aldosterone system inhibitors (RAASi) for older patients with diabetes.

Methods: The design of the CDS tool included the following phases: (1) gathering evidence from systematic reviews and meta-analyses of randomised clinical trials to determine the number needed to treat (NNT) and time-to-benefit (TTB) values applicable to our target population for use in the algorithm. (2) Building a list of potential cases that addressed different prescribing scenarios (starting, adding or switching to RAASi). (3) Reviewing relevant guidelines and extracting all recommendations related to prescribing RAASi for DKD. (4) Matching NNT and TTB with specific clinical cases. (5) Validating the CDS algorithm using Delphi technique.

Results: We created a CDS algorithm that covered 15 possible scenarios and we generated 36 personalised and nine general recommendations based on the calculated and matched NNT and TTB values and considering the patient's life expectancy and functional capacity. The algorithm was validated by experts in three rounds of Delphi study.

Conclusion: We designed an evidence-informed CDS algorithm that integrates considerations often overlooked in CPGs. The next steps include testing the CDS algorithm in a clinical trial.

设计并验证老年糖尿病肾保护临床决策支持算法。
背景:老年糖尿病肾病(DKD)患者往往得不到最佳的药物治疗。目前的临床实践指南(CPGs)没有纳入个性化护理的概念。临床决策支持(CDS)算法可同时考虑证据和个性化护理,以改善患者的治疗效果,从而改善对老年人的护理。本研究旨在设计并验证一种临床决策支持算法,用于为老年糖尿病患者开具肾素-血管紧张素-醛固酮系统抑制剂(RAASi)处方:CDS工具的设计包括以下几个阶段:(1)从随机临床试验的系统综述和荟萃分析中收集证据,以确定适用于目标人群的治疗需要量(NNT)和获益时间(TTB)值,供算法使用。(2)针对不同的处方情况(开始使用、添加或改用 RAASi)建立潜在病例列表。(3) 回顾相关指南并提取与开具 RAASi 治疗 DKD 相关的所有建议。(4) 将 NNT 和 TTB 与具体临床病例相匹配。(5) 使用德尔菲技术验证CDS算法:我们创建了一种 CDS 算法,涵盖 15 种可能的情况,并根据计算和匹配的 NNT 和 TTB 值以及患者的预期寿命和功能能力,生成了 36 个个性化建议和 9 个一般性建议。在三轮德尔菲研究中,专家们对该算法进行了验证:我们设计了一种循证 CDS 算法,其中纳入了 CPG 中经常忽略的考虑因素。下一步工作包括在临床试验中测试 CDS 算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.10
自引率
4.90%
发文量
40
审稿时长
18 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信