{"title":"The LAMB3-EGFR signaling pathway mediates synergistic Anti-Cancer effects of berberine and emodin in Pancreatic cancer","authors":"Caiming Xu , Silvia Pascual-Sabater , Cristina Fillat , Ajay Goel","doi":"10.1016/j.bcp.2024.116509","DOIUrl":null,"url":null,"abstract":"<div><p>Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy, primarily due to the intrinsic development of chemoresistance. The most apparent histopathological feature associated with chemoresistance is the alterations in extracellular matrix (ECM) proteins. Natural dietary botanicals such as berberine (BBR) and emodin (EMO) have been shown to possess chemo-preventive potential by regulating ECM in various cancers. Herein, we further investigated the potential synergistic effects of BBR and EMO in enhancing anticancer efficacy by targeting ECM proteins in pancreatic cancer. Genomewide transcriptomic profiling identified that LAMB3 was significantly upregulated in PDAC tissue and highly associated with poor overall survival (OS, hazard ratio [HR], 2.99, 95 % confidence interval [CI], 1.46–6.15; p = 0.003) and progress-free survival (PFS, HR, 2.59; 95 % CI, 1.30–5.18; p = 0.007) in PDAC. A systematic series of functional experiments in BxPC-3 and MIA-PaCa-2 cells revealed that the combination of BBR and EMO exhibited synergistic anti-tumor potential, as demonstrated by cell proliferation, clonogenicity, migration, and invasion assays (p < 0.05–0.001). The combination also altered the expression of key proteins involved in apoptosis, EMT, and EGFR/ERK1,2/AKT signaling. These findings were further supported by patient-derived organoids (PDOs), where the combined treatment resulted in fewer and smaller organoids compared to each compound individually (<em>p</em> < 0.05–0.001). Our results suggest that BBR combined with EMO exerts synergistic anti-cancer effects by modulating the EGFR-signaling pathway through interference with LAMB3 in PDAC.</p></div>","PeriodicalId":8806,"journal":{"name":"Biochemical pharmacology","volume":"228 ","pages":"Article 116509"},"PeriodicalIF":5.3000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006295224004921","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy, primarily due to the intrinsic development of chemoresistance. The most apparent histopathological feature associated with chemoresistance is the alterations in extracellular matrix (ECM) proteins. Natural dietary botanicals such as berberine (BBR) and emodin (EMO) have been shown to possess chemo-preventive potential by regulating ECM in various cancers. Herein, we further investigated the potential synergistic effects of BBR and EMO in enhancing anticancer efficacy by targeting ECM proteins in pancreatic cancer. Genomewide transcriptomic profiling identified that LAMB3 was significantly upregulated in PDAC tissue and highly associated with poor overall survival (OS, hazard ratio [HR], 2.99, 95 % confidence interval [CI], 1.46–6.15; p = 0.003) and progress-free survival (PFS, HR, 2.59; 95 % CI, 1.30–5.18; p = 0.007) in PDAC. A systematic series of functional experiments in BxPC-3 and MIA-PaCa-2 cells revealed that the combination of BBR and EMO exhibited synergistic anti-tumor potential, as demonstrated by cell proliferation, clonogenicity, migration, and invasion assays (p < 0.05–0.001). The combination also altered the expression of key proteins involved in apoptosis, EMT, and EGFR/ERK1,2/AKT signaling. These findings were further supported by patient-derived organoids (PDOs), where the combined treatment resulted in fewer and smaller organoids compared to each compound individually (p < 0.05–0.001). Our results suggest that BBR combined with EMO exerts synergistic anti-cancer effects by modulating the EGFR-signaling pathway through interference with LAMB3 in PDAC.
期刊介绍:
Biochemical Pharmacology publishes original research findings, Commentaries and review articles related to the elucidation of cellular and tissue function(s) at the biochemical and molecular levels, the modification of cellular phenotype(s) by genetic, transcriptional/translational or drug/compound-induced modifications, as well as the pharmacodynamics and pharmacokinetics of xenobiotics and drugs, the latter including both small molecules and biologics.
The journal''s target audience includes scientists engaged in the identification and study of the mechanisms of action of xenobiotics, biologics and drugs and in the drug discovery and development process.
All areas of cellular biology and cellular, tissue/organ and whole animal pharmacology fall within the scope of the journal. Drug classes covered include anti-infectives, anti-inflammatory agents, chemotherapeutics, cardiovascular, endocrinological, immunological, metabolic, neurological and psychiatric drugs, as well as research on drug metabolism and kinetics. While medicinal chemistry is a topic of complimentary interest, manuscripts in this area must contain sufficient biological data to characterize pharmacologically the compounds reported. Submissions describing work focused predominately on chemical synthesis and molecular modeling will not be considered for review.
While particular emphasis is placed on reporting the results of molecular and biochemical studies, research involving the use of tissue and animal models of human pathophysiology and toxicology is of interest to the extent that it helps define drug mechanisms of action, safety and efficacy.