Nana Zhou , Chaoqin Guo , Jingyang Du , Qiuran Xu , Juejiashan Li , Dongsheng Huang , Xiaoliang Zheng , Linglan Tu
{"title":"PPP1R14B-mediated phosphorylation enhances protein stability of RPS6KA1 to promote hepatocellular carcinoma tumorigenesis","authors":"Nana Zhou , Chaoqin Guo , Jingyang Du , Qiuran Xu , Juejiashan Li , Dongsheng Huang , Xiaoliang Zheng , Linglan Tu","doi":"10.1016/j.bbamcr.2024.119840","DOIUrl":null,"url":null,"abstract":"<div><p>Hepatocellular carcinoma (HCC) is one of the most prevalent cancers worldwide with a poor clinical prognosis. Protein phosphatase 1 regulatory subunit 14B (PPP1R14B) is an unidentified protein phosphatase 1 regulatory subunit that is associated with the occurrence and development of various cancers. Recently, PPP1R14B was found to contribute to paclitaxel resistance and cell progression in triple-negative breast cancer; however, the role of PPP1R14B in HCC is unknown. Here, we found that PPP1R14B was highly expressed in HCC tissues, which suggested a poor prognosis. Knockdown of PPP1R14B significantly inhibited the survival and tumorigenic ability of HCC cells, while overexpression of PPP1R14B had the opposite effects. Mechanistically, Ribosomal Protein S6 Kinase type 1(RPS6KA1) was identified as the target gene of PPP1R14B. PPP1R14B maintained the stability and phosphorylation of RPS6KA1, and positively regulated activation of the AKT/NF-κB pathway. Importantly, PPP1R14B-deficient tumor suppression could be partially restored by wild-type but not phosphorylated mutant RPS6KA1. Taken together, these findings shed light on the function and mechanism of PPP1R14B in HCC progression, indicating PPP1R14B is a promising molecular target for the treatment of HCC.</p></div>","PeriodicalId":8754,"journal":{"name":"Biochimica et biophysica acta. Molecular cell research","volume":"1871 8","pages":"Article 119840"},"PeriodicalIF":4.6000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167488924001836/pdfft?md5=c1a248f317586164f50cc672d12927ac&pid=1-s2.0-S0167488924001836-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular cell research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167488924001836","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent cancers worldwide with a poor clinical prognosis. Protein phosphatase 1 regulatory subunit 14B (PPP1R14B) is an unidentified protein phosphatase 1 regulatory subunit that is associated with the occurrence and development of various cancers. Recently, PPP1R14B was found to contribute to paclitaxel resistance and cell progression in triple-negative breast cancer; however, the role of PPP1R14B in HCC is unknown. Here, we found that PPP1R14B was highly expressed in HCC tissues, which suggested a poor prognosis. Knockdown of PPP1R14B significantly inhibited the survival and tumorigenic ability of HCC cells, while overexpression of PPP1R14B had the opposite effects. Mechanistically, Ribosomal Protein S6 Kinase type 1(RPS6KA1) was identified as the target gene of PPP1R14B. PPP1R14B maintained the stability and phosphorylation of RPS6KA1, and positively regulated activation of the AKT/NF-κB pathway. Importantly, PPP1R14B-deficient tumor suppression could be partially restored by wild-type but not phosphorylated mutant RPS6KA1. Taken together, these findings shed light on the function and mechanism of PPP1R14B in HCC progression, indicating PPP1R14B is a promising molecular target for the treatment of HCC.
期刊介绍:
BBA Molecular Cell Research focuses on understanding the mechanisms of cellular processes at the molecular level. These include aspects of cellular signaling, signal transduction, cell cycle, apoptosis, intracellular trafficking, secretory and endocytic pathways, biogenesis of cell organelles, cytoskeletal structures, cellular interactions, cell/tissue differentiation and cellular enzymology. Also included are studies at the interface between Cell Biology and Biophysics which apply for example novel imaging methods for characterizing cellular processes.