Synthesis and properties of Sr2La2NiW2O12, a new S = 1 triangular lattice magnet.

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Accounts of Chemical Research Pub Date : 2024-10-01 Epub Date: 2024-08-30 DOI:10.1107/S2052520624007091
Anastasiia Smerechuk, Ana Guilherme Buzanich, Bernd Büchner, Sabine Wurmehl, Ryan Morrow
{"title":"Synthesis and properties of Sr<sub>2</sub>La<sub>2</sub>NiW<sub>2</sub>O<sub>12</sub>, a new S = 1 triangular lattice magnet.","authors":"Anastasiia Smerechuk, Ana Guilherme Buzanich, Bernd Büchner, Sabine Wurmehl, Ryan Morrow","doi":"10.1107/S2052520624007091","DOIUrl":null,"url":null,"abstract":"<p><p>Magnetic materials featuring triangular arrangements of spins are frequently investigated as platforms hosting magnetic frustration. Hexagonal perovskites with ordered vacancies serve as excellent candidates for two-dimensional triangular magnetism due to the considerable separation of the magnetic planes. In this work, the effects of chemical pressure on the ferromagnetic ground state of Ba<sub>2</sub>La<sub>2</sub>NiW<sub>2</sub>O<sub>12</sub> by substitution of Ba<sup>2+</sup> with Sr<sup>2+</sup> to produce Sr<sub>2</sub>La<sub>2</sub>NiW<sub>2</sub>O<sub>12</sub> are investigated. The two materials are characterized using synchrotron-based XRD, XANES and EXAFS in addition to magnetometry in order to correlate their crystal structures and magnetic properties. Both materials form in space group R3, yet as a result of the enhanced bending of key bond angles due to the effects of chemical pressure, the T<sub>C</sub> value of the magnetic Ni<sup>2+</sup> sublattice is reduced from ∼6 K in Ba<sub>2</sub>La<sub>2</sub>NiW<sub>2</sub>O<sub>12</sub> to 4 K in Sr<sub>2</sub>La<sub>2</sub>NiW<sub>2</sub>O<sub>12</sub>.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457098/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1107/S2052520624007091","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetic materials featuring triangular arrangements of spins are frequently investigated as platforms hosting magnetic frustration. Hexagonal perovskites with ordered vacancies serve as excellent candidates for two-dimensional triangular magnetism due to the considerable separation of the magnetic planes. In this work, the effects of chemical pressure on the ferromagnetic ground state of Ba2La2NiW2O12 by substitution of Ba2+ with Sr2+ to produce Sr2La2NiW2O12 are investigated. The two materials are characterized using synchrotron-based XRD, XANES and EXAFS in addition to magnetometry in order to correlate their crystal structures and magnetic properties. Both materials form in space group R3, yet as a result of the enhanced bending of key bond angles due to the effects of chemical pressure, the TC value of the magnetic Ni2+ sublattice is reduced from ∼6 K in Ba2La2NiW2O12 to 4 K in Sr2La2NiW2O12.

Abstract Image

新型 S = 1 三角晶格磁体 Sr2La2NiW2O12 的合成与特性。
以三角形自旋排列为特征的磁性材料经常被研究作为承载磁挫折的平台。具有有序空位的六方包晶石因磁性平面之间有相当大的间隔而成为二维三角磁性的绝佳候选材料。在这项研究中,通过用 Sr2+ 替代 Ba2+ 生成 Sr2La2NiW2O12,研究了化学压力对 Ba2La2NiW2O12 铁磁基态的影响。除了磁力测定法之外,还使用同步辐射 XRD、XANES 和 EXAFS 对这两种材料进行了表征,以便将它们的晶体结构和磁性能联系起来。这两种材料都形成 R3 空间群,但由于化学压力的影响导致关键键角的弯曲增强,磁性 Ni2+ 亚晶格的 TC 值从 Ba2La2NiW2O12 中的 ∼6 K 降至 Sr2La2NiW2O12 中的 4 K。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信