{"title":"The accuracy of predicting maladaptation to new environments with genomic data.","authors":"Brandon M Lind, Katie E Lotterhos","doi":"10.1111/1755-0998.14008","DOIUrl":null,"url":null,"abstract":"<p><p>Rapid environmental change poses unprecedented challenges to species persistence. To understand the extent that continued change could have, genomic offset methods have been used to forecast maladaptation of natural populations to future environmental change. However, while their use has become increasingly common, little is known regarding their predictive performance across a wide array of realistic and challenging scenarios. Here, we evaluate the performance of currently available offset methods (gradientForest, the Risk-Of-Non-Adaptedness, redundancy analysis with and without structure correction and LFMM2) using an extensive set of simulated data sets that vary demography, adaptive architecture and the number and spatial patterns of adaptive environments. For each data set, we train models using either all, adaptive or neutral marker sets and evaluate performance using in silico common gardens by correlating known fitness with projected offset. Using over 4,849,600 of such evaluations, we find that (1) method performance is largely due to the degree of local adaptation across the metapopulation (LA), (2) adaptive marker sets provide minimal performance advantages, (3) performance within the species range is variable across gardens and declines when offset models are trained using additional non-adaptive environments and (4) despite (1) performance declines more rapidly in globally novel climates (i.e. a climate without an analogue within the species range) for metapopulations with greater LA than lesser LA. We discuss the implications of these results for management, assisted gene flow and assisted migration.</p>","PeriodicalId":211,"journal":{"name":"Molecular Ecology Resources","volume":" ","pages":"e14008"},"PeriodicalIF":5.5000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology Resources","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/1755-0998.14008","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Rapid environmental change poses unprecedented challenges to species persistence. To understand the extent that continued change could have, genomic offset methods have been used to forecast maladaptation of natural populations to future environmental change. However, while their use has become increasingly common, little is known regarding their predictive performance across a wide array of realistic and challenging scenarios. Here, we evaluate the performance of currently available offset methods (gradientForest, the Risk-Of-Non-Adaptedness, redundancy analysis with and without structure correction and LFMM2) using an extensive set of simulated data sets that vary demography, adaptive architecture and the number and spatial patterns of adaptive environments. For each data set, we train models using either all, adaptive or neutral marker sets and evaluate performance using in silico common gardens by correlating known fitness with projected offset. Using over 4,849,600 of such evaluations, we find that (1) method performance is largely due to the degree of local adaptation across the metapopulation (LA), (2) adaptive marker sets provide minimal performance advantages, (3) performance within the species range is variable across gardens and declines when offset models are trained using additional non-adaptive environments and (4) despite (1) performance declines more rapidly in globally novel climates (i.e. a climate without an analogue within the species range) for metapopulations with greater LA than lesser LA. We discuss the implications of these results for management, assisted gene flow and assisted migration.
期刊介绍:
Molecular Ecology Resources promotes the creation of comprehensive resources for the scientific community, encompassing computer programs, statistical and molecular advancements, and a diverse array of molecular tools. Serving as a conduit for disseminating these resources, the journal targets a broad audience of researchers in the fields of evolution, ecology, and conservation. Articles in Molecular Ecology Resources are crafted to support investigations tackling significant questions within these disciplines.
In addition to original resource articles, Molecular Ecology Resources features Reviews, Opinions, and Comments relevant to the field. The journal also periodically releases Special Issues focusing on resource development within specific areas.