Frequency distance sequences for packet detection in physical-layer security

IF 1.4 2区 数学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Radi Abubaker, Guang Gong
{"title":"Frequency distance sequences for packet detection in physical-layer security","authors":"Radi Abubaker, Guang Gong","doi":"10.1007/s10623-024-01475-x","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we investigate how to construct the required sequences to be used as pilot signals for packet detection in physical-layer security. Our construction starts from the frequency domain, where a set of orthogonal frequencies cover an entire given bandwidth. The construction is a generalized construction from Milewski’s construction, where it takes the inverse discrete Fourier transform of the given frequency domain sequences. In this paper, we call a set of the <i>q</i> sequences of length <span>\\(\\ell q\\)</span> with an equal distanced, nonzero frequency response in the frequency domain a <i>frequency distance sequence set</i> (<i>FDSS</i>) and a sequence interleaved from this set an <i>FDSS interleaved sequence</i>. By applying frequency and time domain relations, we show that such a set is mutually orthogonal, and is a complementary sequence set if and only if the seed sequence is perfect (i.e., zero autocorrelation at all out-of-phase shift). The FDSS interleaved sequence is perfect if and only if the seed sequence is perfect. We apply the proposed sequences to real world experiments as pilot sequences for coarse synchronization. In our experiments, we selected Frank–Zadoff–Chu sequences and Golay pair sequences in our construction for use with an ADALM-Pluto SDR from Analog Devices and simulations, and we show the pilot detection rate under different noisy channel conditions, when compared to alternative pilot selections. The false negative detection rate of our pilot decreases to zero when the SNR is 20 dB. In contrast, a general OFDM QPSK pilot has a false-negative detection rate near 70% at the same SNR. In general, our pilot sequence consistently has a lower false-negative rate to the OFDM QPSK pilot, which failed to detect most packets in the ADALM-Pluto SDR environment.</p>","PeriodicalId":11130,"journal":{"name":"Designs, Codes and Cryptography","volume":"380 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designs, Codes and Cryptography","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10623-024-01475-x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we investigate how to construct the required sequences to be used as pilot signals for packet detection in physical-layer security. Our construction starts from the frequency domain, where a set of orthogonal frequencies cover an entire given bandwidth. The construction is a generalized construction from Milewski’s construction, where it takes the inverse discrete Fourier transform of the given frequency domain sequences. In this paper, we call a set of the q sequences of length \(\ell q\) with an equal distanced, nonzero frequency response in the frequency domain a frequency distance sequence set (FDSS) and a sequence interleaved from this set an FDSS interleaved sequence. By applying frequency and time domain relations, we show that such a set is mutually orthogonal, and is a complementary sequence set if and only if the seed sequence is perfect (i.e., zero autocorrelation at all out-of-phase shift). The FDSS interleaved sequence is perfect if and only if the seed sequence is perfect. We apply the proposed sequences to real world experiments as pilot sequences for coarse synchronization. In our experiments, we selected Frank–Zadoff–Chu sequences and Golay pair sequences in our construction for use with an ADALM-Pluto SDR from Analog Devices and simulations, and we show the pilot detection rate under different noisy channel conditions, when compared to alternative pilot selections. The false negative detection rate of our pilot decreases to zero when the SNR is 20 dB. In contrast, a general OFDM QPSK pilot has a false-negative detection rate near 70% at the same SNR. In general, our pilot sequence consistently has a lower false-negative rate to the OFDM QPSK pilot, which failed to detect most packets in the ADALM-Pluto SDR environment.

Abstract Image

物理层安全中用于数据包检测的频率距离序列
在本文中,我们研究了如何构建所需的序列,作为物理层安全中数据包检测的先导信号。我们的构造从频域开始,其中一组正交频率覆盖整个给定带宽。这种构造是 Milewski 构造的一般化构造,它采用给定频域序列的逆离散傅里叶变换。在本文中,我们将长度为 \(\ell q\) 的、在频域中具有等距、非零频率响应的 q 个序列的集合称为频距序列集(FDSS),而从这个集合交错出来的序列称为 FDSS 交错序列。通过应用频域和时域关系,我们证明这样的序列集是互为正交的,并且只有当且仅当种子序列是完美的(即所有相位外移的自相关性为零)时,它才是一个互补序列集。只有当种子序列完美时,FDSS 交错序列才是完美的。我们将提出的序列应用到实际实验中,作为粗同步的先导序列。在实验中,我们选择了 Frank-Zadoff-Chu 序列和 Golay 对序列,将其与 Analog Devices 公司的 ADALM-Pluto SDR 一起使用,并进行了仿真,与其他先导选择相比,我们展示了不同噪声信道条件下的先导检测率。当信噪比为 20 dB 时,我们的先导的假负检测率降至零。相比之下,在相同信噪比条件下,一般 OFDM QPSK 先导信号的误报率接近 70%。总体而言,我们的先导序列的误报率始终低于 OFDM QPSK 先导序列,后者在 ADALM-Pluto SDR 环境中无法检测到大多数数据包。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Designs, Codes and Cryptography
Designs, Codes and Cryptography 工程技术-计算机:理论方法
CiteScore
2.80
自引率
12.50%
发文量
157
审稿时长
16.5 months
期刊介绍: Designs, Codes and Cryptography is an archival peer-reviewed technical journal publishing original research papers in the designated areas. There is a great deal of activity in design theory, coding theory and cryptography, including a substantial amount of research which brings together more than one of the subjects. While many journals exist for each of the individual areas, few encourage the interaction of the disciplines. The journal was founded to meet the needs of mathematicians, engineers and computer scientists working in these areas, whose interests extend beyond the bounds of any one of the individual disciplines. The journal provides a forum for high quality research in its three areas, with papers touching more than one of the areas especially welcome. The journal also considers high quality submissions in the closely related areas of finite fields and finite geometries, which provide important tools for both the construction and the actual application of designs, codes and cryptographic systems. In particular, it includes (mostly theoretical) papers on computational aspects of finite fields. It also considers topics in sequence design, which frequently admit equivalent formulations in the journal’s main areas. Designs, Codes and Cryptography is mathematically oriented, emphasizing the algebraic and geometric aspects of the areas it covers. The journal considers high quality papers of both a theoretical and a practical nature, provided they contain a substantial amount of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信