{"title":"Assessment of fracture toughness in fibrous concrete via Brazilian test: Experimental study with low-clinker cementitious binder","authors":"","doi":"10.1016/j.tafmec.2024.104641","DOIUrl":null,"url":null,"abstract":"<div><p>As the predominant and cost-effective material in the construction industry, concrete is susceptible to tension weaknesses, leading to significant flaws such as cracking and brittle fracturing. Recent advancements in fibrous concrete have emerged as a solution to mitigate these issues. Incorporating steel fibers in concrete has emerged as a promising solution to improve crack resistance and structural integrity. This study focuses on developing eco-friendly concrete using a low-clinker cementitious binder and short steel fibers to enhance fracture toughness and mitigate the environmental impact by effectively utilizing lime sludge. Concrete specimens were prepared with three binder types: treated lime sludge (TLS) at 15 % and 30 % and calcined clay (CC) at 15 % and 30 %, replacing conventional clinker. Short steel fibers were added at 1.5 % by volume to enhance mechanical properties. Fracture toughness was evaluated using notched Brazilian disc specimens, assessing mode I, II, and mixed-mode (I/II) fracture at multiple notch orientations (β = 0°, 15°, 28.83°, 45°, 60°, 75°, and 90°). Microstructural analysis during strength development was performed using scanning electron microscopy and X-ray diffraction. The findings revealed that specimens containing 15 % TLS, 30 % CC, and 1.5 % steel fibers exhibited the highest fracture toughness. Mode II fracture toughness exceeded mode I, indicating improved resistance to crack propagation. The addition of fibers to the specimens under mode II demonstrated improved fracture toughness, ranging from 0.44 to 0.53 MPa·m<sup>^1/2</sup> compared to the corresponding non-fibrous specimens. The fibrous specimens showed significantly higher ultimate loads at β = 90° compared to β = 0°, indicating superior crack resistance and structural integrity under perpendicular loading conditions. The Brazilian disc specimens demonstrated variability in fracture toughness across different loading orientations, highlighting their suitability for mixed-mode fracture assessment.</p></div>","PeriodicalId":22879,"journal":{"name":"Theoretical and Applied Fracture Mechanics","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Fracture Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167844224003914","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
As the predominant and cost-effective material in the construction industry, concrete is susceptible to tension weaknesses, leading to significant flaws such as cracking and brittle fracturing. Recent advancements in fibrous concrete have emerged as a solution to mitigate these issues. Incorporating steel fibers in concrete has emerged as a promising solution to improve crack resistance and structural integrity. This study focuses on developing eco-friendly concrete using a low-clinker cementitious binder and short steel fibers to enhance fracture toughness and mitigate the environmental impact by effectively utilizing lime sludge. Concrete specimens were prepared with three binder types: treated lime sludge (TLS) at 15 % and 30 % and calcined clay (CC) at 15 % and 30 %, replacing conventional clinker. Short steel fibers were added at 1.5 % by volume to enhance mechanical properties. Fracture toughness was evaluated using notched Brazilian disc specimens, assessing mode I, II, and mixed-mode (I/II) fracture at multiple notch orientations (β = 0°, 15°, 28.83°, 45°, 60°, 75°, and 90°). Microstructural analysis during strength development was performed using scanning electron microscopy and X-ray diffraction. The findings revealed that specimens containing 15 % TLS, 30 % CC, and 1.5 % steel fibers exhibited the highest fracture toughness. Mode II fracture toughness exceeded mode I, indicating improved resistance to crack propagation. The addition of fibers to the specimens under mode II demonstrated improved fracture toughness, ranging from 0.44 to 0.53 MPa·m^1/2 compared to the corresponding non-fibrous specimens. The fibrous specimens showed significantly higher ultimate loads at β = 90° compared to β = 0°, indicating superior crack resistance and structural integrity under perpendicular loading conditions. The Brazilian disc specimens demonstrated variability in fracture toughness across different loading orientations, highlighting their suitability for mixed-mode fracture assessment.
期刊介绍:
Theoretical and Applied Fracture Mechanics'' aims & scopes have been re-designed to cover both the theoretical, applied, and numerical aspects associated with those cracking related phenomena taking place, at a micro-, meso-, and macroscopic level, in materials/components/structures of any kind.
The journal aims to cover the cracking/mechanical behaviour of materials/components/structures in those situations involving both time-independent and time-dependent system of external forces/moments (such as, for instance, quasi-static, impulsive, impact, blasting, creep, contact, and fatigue loading). Since, under the above circumstances, the mechanical behaviour of cracked materials/components/structures is also affected by the environmental conditions, the journal would consider also those theoretical/experimental research works investigating the effect of external variables such as, for instance, the effect of corrosive environments as well as of high/low-temperature.