Arsène J. Ouemba Tassé , Vuyiswa B. Kubalasa , Berge Tsanou , Jean M.-S, Lubuma
{"title":"Nonstandard finite difference schemes for some epidemic optimal control problems","authors":"Arsène J. Ouemba Tassé , Vuyiswa B. Kubalasa , Berge Tsanou , Jean M.-S, Lubuma","doi":"10.1016/j.matcom.2024.08.028","DOIUrl":null,"url":null,"abstract":"<div><p>We construct and analyse nonstandard finite difference (NSFD) schemes for two epidemic optimal control problems. Firstly, we consider the well-known MSEIR system that can be used to model childhood diseases such as the measles, with the vaccination as a control intervention. The second optimal control problem is related to the 2014–2016 West Africa Ebola Virus Disease (EVD) outbreak, that came with the unprecedented challenge of the disease spreading simultaneously in three different countries, namely Guinea, Liberia and Sierra Leone, where it was difficult to control the considerable migrations and travels of people inbound and outbound. We develop an extended SEIRD metapopulation model modified by the addition of compartments of quarantined and isolated individuals. The control parameters are the exit screening of travelers and the vaccination of the susceptible individuals. For the two optimal control problems, we provide the results on: (i) the (global) stability of the disease-free and/or endemic equilibria of the state variable systems; (ii) the positivity and boundedness of solutions of the state variables systems; (iii) the existence, uniqueness and characterization of the optimal control solutions that minimizes the cost functional. On the other hand: (iv) we design Euler-based nonstandard finite difference versions of the Forward-Backward Sweep Method (NSFD-FBSM) that are dynamically consistent with the state variable systems; (v) we provide numerical simulations that support the theory and show the superiority of the nonstandard approach over the classical FBSM. The numerical simulations suggest that significantly increasing the coverage of the vaccine with its implementation for adults as well is essential if the recurrence of measles outbreaks is to be stopped in South Africa. They also show that the optimal control vaccination for the 2014-2016 EVD is more efficient than the exit screening intervention.</p></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378475424003380/pdfft?md5=f50008c0dfc8293cc8457555ebff0bcd&pid=1-s2.0-S0378475424003380-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475424003380","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We construct and analyse nonstandard finite difference (NSFD) schemes for two epidemic optimal control problems. Firstly, we consider the well-known MSEIR system that can be used to model childhood diseases such as the measles, with the vaccination as a control intervention. The second optimal control problem is related to the 2014–2016 West Africa Ebola Virus Disease (EVD) outbreak, that came with the unprecedented challenge of the disease spreading simultaneously in three different countries, namely Guinea, Liberia and Sierra Leone, where it was difficult to control the considerable migrations and travels of people inbound and outbound. We develop an extended SEIRD metapopulation model modified by the addition of compartments of quarantined and isolated individuals. The control parameters are the exit screening of travelers and the vaccination of the susceptible individuals. For the two optimal control problems, we provide the results on: (i) the (global) stability of the disease-free and/or endemic equilibria of the state variable systems; (ii) the positivity and boundedness of solutions of the state variables systems; (iii) the existence, uniqueness and characterization of the optimal control solutions that minimizes the cost functional. On the other hand: (iv) we design Euler-based nonstandard finite difference versions of the Forward-Backward Sweep Method (NSFD-FBSM) that are dynamically consistent with the state variable systems; (v) we provide numerical simulations that support the theory and show the superiority of the nonstandard approach over the classical FBSM. The numerical simulations suggest that significantly increasing the coverage of the vaccine with its implementation for adults as well is essential if the recurrence of measles outbreaks is to be stopped in South Africa. They also show that the optimal control vaccination for the 2014-2016 EVD is more efficient than the exit screening intervention.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.