Yutian Zhong , Zhenyang Liu , Xiaoming Zhang , Zhaoyong Liang , Wufan Chen , Cuixia Dai , Li Qi
{"title":"Unsupervised adversarial neural network for enhancing vasculature in photoacoustic tomography images using optical coherence tomography angiography","authors":"Yutian Zhong , Zhenyang Liu , Xiaoming Zhang , Zhaoyong Liang , Wufan Chen , Cuixia Dai , Li Qi","doi":"10.1016/j.compmedimag.2024.102425","DOIUrl":null,"url":null,"abstract":"<div><p>Photoacoustic tomography (PAT) is a powerful imaging modality for visualizing tissue physiology and exogenous contrast agents. However, PAT faces challenges in visualizing deep-seated vascular structures due to light scattering, absorption, and reduced signal intensity with depth. Optical coherence tomography angiography (OCTA) offers high-contrast visualization of vasculature networks, yet its imaging depth is limited to a millimeter scale. Herein, we propose OCPA-Net, a novel unsupervised deep learning method that utilizes the rich vascular feature of OCTA to enhance PAT images. Trained on unpaired OCTA and PAT images, OCPA-Net incorporates a vessel-aware attention module to enhance deep-seated vessel details captured from OCTA. It leverages a domain-adversarial loss function to enforce structural consistency and a novel identity invariant loss to mitigate excessive image content generation. We validate the structural fidelity of OCPA-Net on simulation experiments, and then demonstrate its vascular enhancement performance on <em>in vivo</em> imaging experiments of tumor-bearing mice and contrast-enhanced pregnant mice. The results show the promise of our method for comprehensive vessel-related image analysis in preclinical research applications.</p></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"117 ","pages":"Article 102425"},"PeriodicalIF":5.4000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computerized Medical Imaging and Graphics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895611124001022","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Photoacoustic tomography (PAT) is a powerful imaging modality for visualizing tissue physiology and exogenous contrast agents. However, PAT faces challenges in visualizing deep-seated vascular structures due to light scattering, absorption, and reduced signal intensity with depth. Optical coherence tomography angiography (OCTA) offers high-contrast visualization of vasculature networks, yet its imaging depth is limited to a millimeter scale. Herein, we propose OCPA-Net, a novel unsupervised deep learning method that utilizes the rich vascular feature of OCTA to enhance PAT images. Trained on unpaired OCTA and PAT images, OCPA-Net incorporates a vessel-aware attention module to enhance deep-seated vessel details captured from OCTA. It leverages a domain-adversarial loss function to enforce structural consistency and a novel identity invariant loss to mitigate excessive image content generation. We validate the structural fidelity of OCPA-Net on simulation experiments, and then demonstrate its vascular enhancement performance on in vivo imaging experiments of tumor-bearing mice and contrast-enhanced pregnant mice. The results show the promise of our method for comprehensive vessel-related image analysis in preclinical research applications.
期刊介绍:
The purpose of the journal Computerized Medical Imaging and Graphics is to act as a source for the exchange of research results concerning algorithmic advances, development, and application of digital imaging in disease detection, diagnosis, intervention, prevention, precision medicine, and population health. Included in the journal will be articles on novel computerized imaging or visualization techniques, including artificial intelligence and machine learning, augmented reality for surgical planning and guidance, big biomedical data visualization, computer-aided diagnosis, computerized-robotic surgery, image-guided therapy, imaging scanning and reconstruction, mobile and tele-imaging, radiomics, and imaging integration and modeling with other information relevant to digital health. The types of biomedical imaging include: magnetic resonance, computed tomography, ultrasound, nuclear medicine, X-ray, microwave, optical and multi-photon microscopy, video and sensory imaging, and the convergence of biomedical images with other non-imaging datasets.