Towards zero knowledge argument for double discrete logarithm with constant cost

IF 0.9 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Diya Krishnan , Xiang Fu
{"title":"Towards zero knowledge argument for double discrete logarithm with constant cost","authors":"Diya Krishnan ,&nbsp;Xiang Fu","doi":"10.1016/j.tcs.2024.114799","DOIUrl":null,"url":null,"abstract":"<div><p>Given that the Schnorr's protocol for Discrete Logarithm (DLOG) exchanges three messages, it is an interesting problem whether a constant round zero-knowledge protocol exists for the Double Discrete Logarithm problem (DDLOG), i.e., to demonstrate the knowledge of a secret witness <em>x</em> in <span><math><msup><mrow><mi>g</mi></mrow><mrow><msup><mrow><mi>h</mi></mrow><mrow><mi>x</mi></mrow></msup></mrow></msup></math></span>. In this paper, we show that it exists for a fragment of DDLOG with two restrictions: (1) The outer group of DDLOG supports bilinear pairing, and it needs a trusted set-up for common reference string (CRS). (2) <span><math><mi>x</mi><mo>&lt;</mo><mi>t</mi></math></span> where <em>t</em> is the size of KZG commitment key in CRS. The protocol is zero knowledge and constant round, with <span><math><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span> complexity for prover and verifier, regardless of the desired security strength. The contributions of the work are mainly theoretical due to its restrictions and concrete performance.</p></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1018 ","pages":"Article 114799"},"PeriodicalIF":0.9000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030439752400416X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Given that the Schnorr's protocol for Discrete Logarithm (DLOG) exchanges three messages, it is an interesting problem whether a constant round zero-knowledge protocol exists for the Double Discrete Logarithm problem (DDLOG), i.e., to demonstrate the knowledge of a secret witness x in ghx. In this paper, we show that it exists for a fragment of DDLOG with two restrictions: (1) The outer group of DDLOG supports bilinear pairing, and it needs a trusted set-up for common reference string (CRS). (2) x<t where t is the size of KZG commitment key in CRS. The protocol is zero knowledge and constant round, with O(1) complexity for prover and verifier, regardless of the desired security strength. The contributions of the work are mainly theoretical due to its restrictions and concrete performance.

以恒定成本实现双离散对数的零知识论证
鉴于离散对数(DLOG)的施诺尔协议(Schnorr's protocol)需要交换三条信息,那么对于双离散对数问题(DDLOG),即在ghx中证明秘密证人x的知识,是否存在恒定轮零知识协议,这是一个有趣的问题。本文证明,DDLOG 的一个片段存在零知识协议,但有两个限制条件:(1) DDLOG 的外群支持双线性配对,并且需要一个可信的共同参考字符串(CRS)设置。(2) x<t 其中 t 是 CRS 中 KZG 承诺密钥的大小。该协议是零知识和恒定回合协议,无论所需的安全强度如何,证明者和验证者的复杂度均为 O(1)。由于其限制和具体性能,这项工作的贡献主要在于理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theoretical Computer Science
Theoretical Computer Science 工程技术-计算机:理论方法
CiteScore
2.60
自引率
18.20%
发文量
471
审稿时长
12.6 months
期刊介绍: Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信