Mesoscale smoothed particle hydrodynamics simulation of seizure and flash temperature for dry friction of elastoplastic solids in a newly developed model

IF 3.1 3区 计算机科学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
{"title":"Mesoscale smoothed particle hydrodynamics simulation of seizure and flash temperature for dry friction of elastoplastic solids in a newly developed model","authors":"","doi":"10.1016/j.jocs.2024.102325","DOIUrl":null,"url":null,"abstract":"<div><p>This study developed a simulation model using a smoothed particle hydrodynamics (SPH) method targeted to seizure process at the mesoscale. The mechanisms of wear, adhesion, and heat generation leading to seizure at the mesoscale were modelized without assumptions or theories based on empirical rules. In particular, we targeted on flash temperature during seizure process, which is difficult to measure directly in experiment and has not been simulated without using friction theory. Our model consisted of both a macroscopic elastoplastic consideration and a microscopic interfacial interaction consideration, and the heat generation scheme that 90% of the plastic strain energy is converted to heat energy were adopted in the model. The simulation demonstrated the seizure process in which the contact state is maintained by the strong interfacial interaction as the plastic strain progresses and the temperature rapidly rises. The flash temperature by the simulation provided a reasonable quantitative match at order level to a temperature estimated by substituting true contact area and interfacial heat flux obtained by the simulation into a theoretical formula of flash temperature.</p></div>","PeriodicalId":48907,"journal":{"name":"Journal of Computational Science","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1877750324001182/pdfft?md5=0896fcdccbaa88792ade2db2d88ae7b0&pid=1-s2.0-S1877750324001182-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877750324001182","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This study developed a simulation model using a smoothed particle hydrodynamics (SPH) method targeted to seizure process at the mesoscale. The mechanisms of wear, adhesion, and heat generation leading to seizure at the mesoscale were modelized without assumptions or theories based on empirical rules. In particular, we targeted on flash temperature during seizure process, which is difficult to measure directly in experiment and has not been simulated without using friction theory. Our model consisted of both a macroscopic elastoplastic consideration and a microscopic interfacial interaction consideration, and the heat generation scheme that 90% of the plastic strain energy is converted to heat energy were adopted in the model. The simulation demonstrated the seizure process in which the contact state is maintained by the strong interfacial interaction as the plastic strain progresses and the temperature rapidly rises. The flash temperature by the simulation provided a reasonable quantitative match at order level to a temperature estimated by substituting true contact area and interfacial heat flux obtained by the simulation into a theoretical formula of flash temperature.

在新开发的模型中对弹塑性固体干摩擦的咬合和闪光温度进行中尺度平滑粒子流体力学模拟
本研究使用平滑粒子流体力学(SPH)方法开发了一个针对中尺度咬合过程的模拟模型。在没有假设或理论的情况下,我们根据经验法则对磨损、粘附和热量产生的机制进行了建模。特别是,我们将目标锁定在咬合过程中的闪蒸温度上,这在实验中很难直接测量,而且在不使用摩擦理论的情况下也无法模拟。我们的模型包括宏观弹塑性考虑和微观界面相互作用考虑,并采用了 90% 的塑性应变能转化为热能的发热方案。模拟结果表明,在塑性应变逐渐增大、温度迅速升高的过程中,接触状态因强烈的界面相互作用而得以维持。通过将模拟获得的真实接触面积和界面热通量代入闪蒸温度的理论公式,模拟得出的闪蒸温度在数量级上与估算的温度相吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computational Science
Journal of Computational Science COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
5.50
自引率
3.00%
发文量
227
审稿时长
41 days
期刊介绍: Computational Science is a rapidly growing multi- and interdisciplinary field that uses advanced computing and data analysis to understand and solve complex problems. It has reached a level of predictive capability that now firmly complements the traditional pillars of experimentation and theory. The recent advances in experimental techniques such as detectors, on-line sensor networks and high-resolution imaging techniques, have opened up new windows into physical and biological processes at many levels of detail. The resulting data explosion allows for detailed data driven modeling and simulation. This new discipline in science combines computational thinking, modern computational methods, devices and collateral technologies to address problems far beyond the scope of traditional numerical methods. Computational science typically unifies three distinct elements: • Modeling, Algorithms and Simulations (e.g. numerical and non-numerical, discrete and continuous); • Software developed to solve science (e.g., biological, physical, and social), engineering, medicine, and humanities problems; • Computer and information science that develops and optimizes the advanced system hardware, software, networking, and data management components (e.g. problem solving environments).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信