Experimental study and thermodynamic modeling of CO2+CH4 gas mixture hydrate phase equilibria for gas separation efficiency

IF 4.2 3区 工程技术 Q2 ENERGY & FUELS
{"title":"Experimental study and thermodynamic modeling of CO2+CH4 gas mixture hydrate phase equilibria for gas separation efficiency","authors":"","doi":"10.1016/j.ngib.2024.08.001","DOIUrl":null,"url":null,"abstract":"<div><p>Gas separation is a critical application of gas hydrates, and accurately predicting separation performance is crucial. In this study, we used thermodynamic calculations to predict the equilibrium phase of gas hydrates for various mole fractions of CO<sub>2</sub> + CH<sub>4</sub> gas mixtures. We also determined the mole fraction of each gas component trapped within the hydrate clathrate. To predict the equilibrium points, we used the Soave–Redlich–Kwong((SRK) equation of state for the gas phase, the nonrandom two-liquid (NRTL)model for the liquid phase, and the Chen–Guo model for the hydrate phase. We modified the hydrate fugacity formula and introduced a new function to improve the accuracy of the Chen–Guo model. By incorporating experimental equilibrium results from our study and another study, we developed a correlation based on gas mixture composition and temperature, resulting in highly accurate predictions. The use of this new correlation for hydrate fugacity calculation significantly improved precision, as evidenced by an average absolute deviation percent of calculated pressures (AADP) of 1.34% for pure CO<sub>2</sub> and 1.25% for CH<sub>4</sub>. When considering the 27 data points of different CO<sub>2</sub> + CH<sub>4</sub> mixtures, the AADP% was 1.98%.To implement the model to predict equilibrium phases, we used the Chen–Guo framework to determine the mole fraction of each gas component in the hydrate mixture. Interestingly, we discovered a linear correlation between the CO<sub>2</sub> mole fraction in the hydrate and equilibrium pressure, with a slope of approximately 0.001 and a y-intercept of less than one, for all gas compositions. Therefore, we can conclude that low thermodynamic conditions (temperature and pressure) result in a high CO<sub>2</sub> mole fraction in the hydrate phase and great separation efficiency.</p></div>","PeriodicalId":37116,"journal":{"name":"Natural Gas Industry B","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352854024000524/pdfft?md5=1cc0531eb8cb949df3e5b186706e0aa7&pid=1-s2.0-S2352854024000524-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Gas Industry B","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352854024000524","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Gas separation is a critical application of gas hydrates, and accurately predicting separation performance is crucial. In this study, we used thermodynamic calculations to predict the equilibrium phase of gas hydrates for various mole fractions of CO2 + CH4 gas mixtures. We also determined the mole fraction of each gas component trapped within the hydrate clathrate. To predict the equilibrium points, we used the Soave–Redlich–Kwong((SRK) equation of state for the gas phase, the nonrandom two-liquid (NRTL)model for the liquid phase, and the Chen–Guo model for the hydrate phase. We modified the hydrate fugacity formula and introduced a new function to improve the accuracy of the Chen–Guo model. By incorporating experimental equilibrium results from our study and another study, we developed a correlation based on gas mixture composition and temperature, resulting in highly accurate predictions. The use of this new correlation for hydrate fugacity calculation significantly improved precision, as evidenced by an average absolute deviation percent of calculated pressures (AADP) of 1.34% for pure CO2 and 1.25% for CH4. When considering the 27 data points of different CO2 + CH4 mixtures, the AADP% was 1.98%.To implement the model to predict equilibrium phases, we used the Chen–Guo framework to determine the mole fraction of each gas component in the hydrate mixture. Interestingly, we discovered a linear correlation between the CO2 mole fraction in the hydrate and equilibrium pressure, with a slope of approximately 0.001 and a y-intercept of less than one, for all gas compositions. Therefore, we can conclude that low thermodynamic conditions (temperature and pressure) result in a high CO2 mole fraction in the hydrate phase and great separation efficiency.

针对气体分离效率的 CO2+CH4 混合气体水合物相平衡的实验研究和热力学建模
气体分离是气体水合物的一项重要应用,准确预测分离性能至关重要。在这项研究中,我们使用热力学计算方法预测了不同摩尔分数的 CO2 + CH4 气体混合物的气体水合物平衡相。我们还确定了被困在水合物凝块中的每种气体成分的摩尔分数。为了预测平衡点,我们对气相使用了 Soave-Redlich-Kwong(SRK)状态方程,对液相使用了非随机双液(NRTL)模型,对水合物相使用了 Chen-Guo 模型。我们修改了水合物逸度公式,并引入了一个新函数,以提高 Chen-Guo 模型的准确性。结合我们的研究和另一项研究的实验平衡结果,我们开发了一种基于气体混合物成分和温度的相关性,从而实现了高度精确的预测。使用这种新的相关性进行水合物逸度计算后,精度大大提高,纯 CO2 和 CH4 的计算压力平均绝对偏差百分比 (AADP) 分别为 1.34% 和 1.25%。考虑到不同 CO2 + CH4 混合物的 27 个数据点,AADP% 为 1.98%。为了实现预测平衡相的模型,我们使用 Chen-Guo 框架来确定水合物混合物中每种气体成分的摩尔分数。有趣的是,我们发现在所有气体成分中,水合物中二氧化碳的摩尔分数与平衡压力呈线性相关,斜率约为 0.001,y-截距小于 1。因此,我们可以得出结论,低热力学条件(温度和压力)会导致水合物相中的二氧化碳摩尔分数高,分离效率高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Natural Gas Industry B
Natural Gas Industry B Earth and Planetary Sciences-Geology
CiteScore
5.80
自引率
6.10%
发文量
46
审稿时长
79 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信