{"title":"On the use of the cumulant generating function for inference on time series","authors":"A. Moor, D. La Vecchia, E. Ronchetti","doi":"10.1016/j.csda.2024.108044","DOIUrl":null,"url":null,"abstract":"<div><p>Innovative inference procedures for analyzing time series data are introduced. The methodology covers density approximation and composite hypothesis testing based on Whittle's estimator, which is a widely applied M-estimator in the frequency domain. Its core feature involves the cumulant generating function of Whittle's score obtained using an approximated distribution of the periodogram ordinates. A testing algorithm not only significantly expands the applicability of the state-of-the-art saddlepoint test, but also maintains the numerical accuracy of the saddlepoint approximation. Connections are made with three other prevalent frequency domain techniques: the bootstrap, empirical likelihood, and exponential tilting. Numerical examples using both simulated and real data illustrate the advantages and accuracy of the saddlepoint methods.</p></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"201 ","pages":"Article 108044"},"PeriodicalIF":1.5000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167947324001282/pdfft?md5=9b20083653468ba252743f2a96727926&pid=1-s2.0-S0167947324001282-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics & Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947324001282","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Innovative inference procedures for analyzing time series data are introduced. The methodology covers density approximation and composite hypothesis testing based on Whittle's estimator, which is a widely applied M-estimator in the frequency domain. Its core feature involves the cumulant generating function of Whittle's score obtained using an approximated distribution of the periodogram ordinates. A testing algorithm not only significantly expands the applicability of the state-of-the-art saddlepoint test, but also maintains the numerical accuracy of the saddlepoint approximation. Connections are made with three other prevalent frequency domain techniques: the bootstrap, empirical likelihood, and exponential tilting. Numerical examples using both simulated and real data illustrate the advantages and accuracy of the saddlepoint methods.
介绍了用于分析时间序列数据的创新推理程序。该方法涵盖了基于惠特尔估计器的密度近似和复合假设检验,惠特尔估计器是频域中广泛应用的 M 估计器。其核心特征是利用周期图序数的近似分布获得惠特尔评分的累积生成函数。测试算法不仅大大扩展了最先进的鞍点测试的适用性,而且保持了鞍点近似的数值精度。与其他三种流行的频域技术:自举法、经验似然法和指数倾斜法建立了联系。使用模拟和真实数据的数值示例说明了鞍点方法的优势和准确性。
期刊介绍:
Computational Statistics and Data Analysis (CSDA), an Official Publication of the network Computational and Methodological Statistics (CMStatistics) and of the International Association for Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of four refereed sections which are divided into the following subject areas:
I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics,computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article.
II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures.
[...]
III) Special Applications - [...]
IV) Annals of Statistical Data Science [...]