{"title":"Stable creation of a single plasma channel and collimated fast electrons using large-scale PIC simulations with new dynamic load-balancing technique","authors":"Hideaki Habara , Yoshinori Ueyama , Yutaka Nakamura , Hitoshi Sakagami","doi":"10.1016/j.hedp.2024.101147","DOIUrl":null,"url":null,"abstract":"<div><p>We developed a PIC code using new load balancing technique, in which the lower load processes help the higher load processes. A test calculation indicates more than 10 times faster than that without load balancing. Large scale 3-d calculations indicate the formation of central current whose density is close to critical density, supported by the magnetic field inside the channel.</p></div>","PeriodicalId":49267,"journal":{"name":"High Energy Density Physics","volume":"53 ","pages":"Article 101147"},"PeriodicalIF":1.6000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1574181824000727/pdfft?md5=b8de97496eff919d4d9acc761c6c39f1&pid=1-s2.0-S1574181824000727-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Energy Density Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574181824000727","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
We developed a PIC code using new load balancing technique, in which the lower load processes help the higher load processes. A test calculation indicates more than 10 times faster than that without load balancing. Large scale 3-d calculations indicate the formation of central current whose density is close to critical density, supported by the magnetic field inside the channel.
期刊介绍:
High Energy Density Physics is an international journal covering original experimental and related theoretical work studying the physics of matter and radiation under extreme conditions. ''High energy density'' is understood to be an energy density exceeding about 1011 J/m3. The editors and the publisher are committed to provide this fast-growing community with a dedicated high quality channel to distribute their original findings.
Papers suitable for publication in this journal cover topics in both the warm and hot dense matter regimes, such as laboratory studies relevant to non-LTE kinetics at extreme conditions, planetary interiors, astrophysical phenomena, inertial fusion and includes studies of, for example, material properties and both stable and unstable hydrodynamics. Developments in associated theoretical areas, for example the modelling of strongly coupled, partially degenerate and relativistic plasmas, are also covered.