MaskRecon: High-quality human reconstruction via masked autoencoders using a single RGB-D image

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
{"title":"MaskRecon: High-quality human reconstruction via masked autoencoders using a single RGB-D image","authors":"","doi":"10.1016/j.neucom.2024.128487","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we explore reconstructing high-quality clothed 3D humans from a single RGB-D image, assuming that virtual humans can be represented by front-view and back-view depths. Due to the scarcity of captured real RGB-D human images, we employ rendered images to train our method. However, rendered images lack background with significant depth variation in silhouettes, leading to shape prediction inaccuracies and noise. To mitigate this issue, we introduce a pseudo-multi-task framework, which incorporates a Conditional Generative Adversarial Network (CGAN) to infer back-view RGB-D images and a self-supervised Masked Autoencoder (MAE) to capture latent structural information of the human body. Additionally, we propose a Multi-scale Feature Fusion (MFF) module to effectively merge structural information and conditional features at various scales. Our method surpasses many existing techniques, as demonstrated through evaluations on the Thuman, RenderPeople, and BUFF datasets. Notably, our approach excels in reconstructing high-quality human models, even under challenging conditions such as complex poses and loose clothing, both on rendered and real-world images. Codes are available at <span><span>https://github.com/Archaic-Atom/MaskRecon</span><svg><path></path></svg></span>.</p></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":null,"pages":null},"PeriodicalIF":5.5000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092523122401258X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we explore reconstructing high-quality clothed 3D humans from a single RGB-D image, assuming that virtual humans can be represented by front-view and back-view depths. Due to the scarcity of captured real RGB-D human images, we employ rendered images to train our method. However, rendered images lack background with significant depth variation in silhouettes, leading to shape prediction inaccuracies and noise. To mitigate this issue, we introduce a pseudo-multi-task framework, which incorporates a Conditional Generative Adversarial Network (CGAN) to infer back-view RGB-D images and a self-supervised Masked Autoencoder (MAE) to capture latent structural information of the human body. Additionally, we propose a Multi-scale Feature Fusion (MFF) module to effectively merge structural information and conditional features at various scales. Our method surpasses many existing techniques, as demonstrated through evaluations on the Thuman, RenderPeople, and BUFF datasets. Notably, our approach excels in reconstructing high-quality human models, even under challenging conditions such as complex poses and loose clothing, both on rendered and real-world images. Codes are available at https://github.com/Archaic-Atom/MaskRecon.

MaskRecon:通过使用单一 RGB-D 图像的屏蔽自动编码器实现高质量人体重建
在本文中,我们假设虚拟人可以用前视和后视深度来表示,探索从单张 RGB-D 图像中重建高质量的穿衣三维人体。由于拍摄到的真实 RGB-D 人体图像很少,我们采用了渲染图像来训练我们的方法。然而,渲染图像缺乏背景,剪影的深度变化较大,导致形状预测不准确和噪声。为了缓解这一问题,我们引入了一个伪多任务框架,其中包含一个条件生成对抗网络(CGAN)来推断后视 RGB-D 图像,以及一个自监督掩码自动编码器(MAE)来捕捉人体的潜在结构信息。此外,我们还提出了多尺度特征融合(MFF)模块,以有效融合不同尺度的结构信息和条件特征。通过对 Thuman、RenderPeople 和 BUFF 数据集的评估,我们的方法超越了许多现有技术。值得注意的是,我们的方法在重建高质量人体模型方面表现出色,即使在复杂姿势和宽松衣物等具有挑战性的条件下,也能在渲染图像和真实世界图像上重建高质量人体模型。代码见 https://github.com/Archaic-Atom/MaskRecon。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信