{"title":"Theoretical Investigations of a point mutation affecting H5 Hemagglutinin’s receptor binding preference","authors":"Quoc Bao Ngo , André H. Juffer","doi":"10.1016/j.compbiolchem.2024.108189","DOIUrl":null,"url":null,"abstract":"<div><p>The avian influenza A H5N1 virus is a subtype of influenza A virus (IAV) that causes a highly infectious and severe respiratory illness in birds and poses significant economic losses in poultry farming. To infect host cell, the virus uses its surface glycoprotein named Hemagglutinin (HA) to recognize and to interact with the host cell receptor containing either α2,6- (SAα2,6 Gal) or α2,3-linked Sialic Acid (SAα2,3 Gal). The H5N1 virus has not yet acquired the capability for efficient human-to-human transmission. However, studies have demonstrated that even a single amino acid substitution in the HA can switch its glycan receptor preference from the avian-type SAα2,3 Gal to the human-type SAα2,6 Gal. The present study aims to explain the underlying mechanism of a mutation (D94N) on the H5 HA that causes the protein to change its glycan receptor-binding preference using molecular dynamics (MD) simulations. Our results reveal that the mutation alters the electrostatic interactions pattern near the HA receptor binding pocket, leading to a reduced stability for the HA-avian-type SAα2,3 Gal complex. On the other hand, the detrimental effect of the mutation D94N is not observed in the HA-human-type SAα2,6 Gal complex due to the glycan's capability to switch its topology.</p></div>","PeriodicalId":10616,"journal":{"name":"Computational Biology and Chemistry","volume":"113 ","pages":"Article 108189"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Biology and Chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476927124001774","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The avian influenza A H5N1 virus is a subtype of influenza A virus (IAV) that causes a highly infectious and severe respiratory illness in birds and poses significant economic losses in poultry farming. To infect host cell, the virus uses its surface glycoprotein named Hemagglutinin (HA) to recognize and to interact with the host cell receptor containing either α2,6- (SAα2,6 Gal) or α2,3-linked Sialic Acid (SAα2,3 Gal). The H5N1 virus has not yet acquired the capability for efficient human-to-human transmission. However, studies have demonstrated that even a single amino acid substitution in the HA can switch its glycan receptor preference from the avian-type SAα2,3 Gal to the human-type SAα2,6 Gal. The present study aims to explain the underlying mechanism of a mutation (D94N) on the H5 HA that causes the protein to change its glycan receptor-binding preference using molecular dynamics (MD) simulations. Our results reveal that the mutation alters the electrostatic interactions pattern near the HA receptor binding pocket, leading to a reduced stability for the HA-avian-type SAα2,3 Gal complex. On the other hand, the detrimental effect of the mutation D94N is not observed in the HA-human-type SAα2,6 Gal complex due to the glycan's capability to switch its topology.
期刊介绍:
Computational Biology and Chemistry publishes original research papers and review articles in all areas of computational life sciences. High quality research contributions with a major computational component in the areas of nucleic acid and protein sequence research, molecular evolution, molecular genetics (functional genomics and proteomics), theory and practice of either biology-specific or chemical-biology-specific modeling, and structural biology of nucleic acids and proteins are particularly welcome. Exceptionally high quality research work in bioinformatics, systems biology, ecology, computational pharmacology, metabolism, biomedical engineering, epidemiology, and statistical genetics will also be considered.
Given their inherent uncertainty, protein modeling and molecular docking studies should be thoroughly validated. In the absence of experimental results for validation, the use of molecular dynamics simulations along with detailed free energy calculations, for example, should be used as complementary techniques to support the major conclusions. Submissions of premature modeling exercises without additional biological insights will not be considered.
Review articles will generally be commissioned by the editors and should not be submitted to the journal without explicit invitation. However prospective authors are welcome to send a brief (one to three pages) synopsis, which will be evaluated by the editors.