Unusual Tm3+ sensitization-induced white-emitting and thermostable improvement in Ba2Y2Ge4O13:Dy3+ phosphor for solid-state lighting and optical thermometry
{"title":"Unusual Tm3+ sensitization-induced white-emitting and thermostable improvement in Ba2Y2Ge4O13:Dy3+ phosphor for solid-state lighting and optical thermometry","authors":"Huan Tang, Xiaoyang Zhao, Yue Qin, Shanlin Liu, Hongzhi Zhang, Hong Li, Conglin Liu, Jing Zhu","doi":"10.1016/j.progsolidstchem.2024.100477","DOIUrl":null,"url":null,"abstract":"<div><p>Currently, the development of single-phase white emitters is an interesting research topic. Researchers have paid much attention to tune white-emitting of Dy<sup>3+</sup>-activated phosphors via Tm<sup>3+</sup> sensitization strategy. However, the role of Tm<sup>3+</sup> sensitization on luminescence thermostability was usually underestimated. Herein, color-tunable germanate phosphors Ba<sub>2</sub>Y<sub>2</sub>Ge<sub>4</sub>O<sub>13</sub> (BYGO):Tm<sup>3+</sup>,Dy<sup>3+</sup> were prepared. The white light emission is achieved due to the effective energy transfer from Tm<sup>3+</sup> to Dy<sup>3+</sup>. A BYGO:Tm<sup>3+</sup>,Dy<sup>3+</sup>-based w-LED exhibits warm white-emitting. Moreover, the back-energy transfer of Dy<sup>3+</sup>→Tm<sup>3+</sup> contributes to the improvement of luminescence thermal stability. Meanwhile, the difference of temperature-dependent Tm<sup>3+</sup> and Dy<sup>3+</sup> emissions realizes satisfactory temperature sensing properties. This work provides a deep understanding for the role of Tm<sup>3+</sup> sensitization strategy on color tuning and thermostable improvement, promoting multifunctional utilizations of Dy<sup>3+</sup>-activated phosphors.</p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":"75 ","pages":"Article 100477"},"PeriodicalIF":9.1000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Solid State Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079678624000402","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Currently, the development of single-phase white emitters is an interesting research topic. Researchers have paid much attention to tune white-emitting of Dy3+-activated phosphors via Tm3+ sensitization strategy. However, the role of Tm3+ sensitization on luminescence thermostability was usually underestimated. Herein, color-tunable germanate phosphors Ba2Y2Ge4O13 (BYGO):Tm3+,Dy3+ were prepared. The white light emission is achieved due to the effective energy transfer from Tm3+ to Dy3+. A BYGO:Tm3+,Dy3+-based w-LED exhibits warm white-emitting. Moreover, the back-energy transfer of Dy3+→Tm3+ contributes to the improvement of luminescence thermal stability. Meanwhile, the difference of temperature-dependent Tm3+ and Dy3+ emissions realizes satisfactory temperature sensing properties. This work provides a deep understanding for the role of Tm3+ sensitization strategy on color tuning and thermostable improvement, promoting multifunctional utilizations of Dy3+-activated phosphors.
期刊介绍:
Progress in Solid State Chemistry offers critical reviews and specialized articles written by leading experts in the field, providing a comprehensive view of solid-state chemistry. It addresses the challenge of dispersed literature by offering up-to-date assessments of research progress and recent developments. Emphasis is placed on the relationship between physical properties and structural chemistry, particularly imperfections like vacancies and dislocations. The reviews published in Progress in Solid State Chemistry emphasize critical evaluation of the field, along with indications of current problems and future directions. Papers are not intended to be bibliographic in nature but rather to inform a broad range of readers in an inherently multidisciplinary field by providing expert treatises oriented both towards specialists in different areas of the solid state and towards nonspecialists. The authorship is international, and the subject matter will be of interest to chemists, materials scientists, physicists, metallurgists, crystallographers, ceramists, and engineers interested in the solid state.