{"title":"Linear quadratic optimal control of stochastic 2-D Roesser models","authors":"Xiaomin Xue , Juanjuan Xu , Huanshui Zhang","doi":"10.1016/j.matcom.2024.08.029","DOIUrl":null,"url":null,"abstract":"<div><p>This paper investigates the linear quadratic (LQ) optimal control problem for the stochastic two-dimensional (2-D) systems governed by Roesser models with multiplicative noise. The main contribution is to give the necessary and sufficient optimality condition by proposing a set of novel forward and backward stochastic partial difference equations (FBSPDE), and to further present the explicitly optimal feedback control laws on the finite horizon and on the infinite horizon based on the Riccati-like difference equations and the algebraic equation, respectively. Several numerical simulations are provided to illustrate the performance of the designed controllers.</p></div>","PeriodicalId":49856,"journal":{"name":"Mathematics and Computers in Simulation","volume":"227 ","pages":"Pages 500-510"},"PeriodicalIF":4.4000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Computers in Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475424003410","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates the linear quadratic (LQ) optimal control problem for the stochastic two-dimensional (2-D) systems governed by Roesser models with multiplicative noise. The main contribution is to give the necessary and sufficient optimality condition by proposing a set of novel forward and backward stochastic partial difference equations (FBSPDE), and to further present the explicitly optimal feedback control laws on the finite horizon and on the infinite horizon based on the Riccati-like difference equations and the algebraic equation, respectively. Several numerical simulations are provided to illustrate the performance of the designed controllers.
期刊介绍:
The aim of the journal is to provide an international forum for the dissemination of up-to-date information in the fields of the mathematics and computers, in particular (but not exclusively) as they apply to the dynamics of systems, their simulation and scientific computation in general. Published material ranges from short, concise research papers to more general tutorial articles.
Mathematics and Computers in Simulation, published monthly, is the official organ of IMACS, the International Association for Mathematics and Computers in Simulation (Formerly AICA). This Association, founded in 1955 and legally incorporated in 1956 is a member of FIACC (the Five International Associations Coordinating Committee), together with IFIP, IFAV, IFORS and IMEKO.
Topics covered by the journal include mathematical tools in:
•The foundations of systems modelling
•Numerical analysis and the development of algorithms for simulation
They also include considerations about computer hardware for simulation and about special software and compilers.
The journal also publishes articles concerned with specific applications of modelling and simulation in science and engineering, with relevant applied mathematics, the general philosophy of systems simulation, and their impact on disciplinary and interdisciplinary research.
The journal includes a Book Review section -- and a "News on IMACS" section that contains a Calendar of future Conferences/Events and other information about the Association.