Mathematical modeling of malaria epidemic dynamics with enlightenment and therapy intervention using the Laplace-Adomian decomposition method and Caputo fractional order

Akeem Olarewaju Yunus, Morufu Oyedunsi Olayiwola
{"title":"Mathematical modeling of malaria epidemic dynamics with enlightenment and therapy intervention using the Laplace-Adomian decomposition method and Caputo fractional order","authors":"Akeem Olarewaju Yunus,&nbsp;Morufu Oyedunsi Olayiwola","doi":"10.1016/j.fraope.2024.100147","DOIUrl":null,"url":null,"abstract":"<div><p>This paper examines malaria, a prevalent mosquito-borne disease in Africa that causes fever, chills, and headaches. Diagnosis involves blood tests, and treatment primarily relies on antimalarial drugs. Mathematical modeling is crucial for disease prevention and eradication strategies. The study uses deterministic models to analyze global malaria transmission patterns, focusing on enlightened therapy's effectiveness as a control measure.</p><p>Four compartmental models depict susceptible, latent, infected, and recovered populations, exploring various disease spread scenarios while ensuring model stability and reliability. Epidemiological principles identify disease-free and endemic equilibria, calculating the basic reproduction number. Stability analysis utilizes Lyapunov functions, supported by Laplace transformation and MAPLE18 simulations for solution derivation.</p><p>Furthermore, the study investigates the impact of fractional-order derivatives on transmission dynamics and control strategies, analyzing the effects of increasing fractional derivative orders using graphical representations. This research provides insights valuable for public health initiatives and malaria eradication efforts, emphasizing the role of Caputo fractional derivatives in refining malaria control strategies and elucidating the findings for a broader readership appeal.</p></div>","PeriodicalId":100554,"journal":{"name":"Franklin Open","volume":"8 ","pages":"Article 100147"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S277318632400077X/pdfft?md5=8e07dc6ab44684bcecb7c781be62bd4e&pid=1-s2.0-S277318632400077X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Franklin Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277318632400077X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper examines malaria, a prevalent mosquito-borne disease in Africa that causes fever, chills, and headaches. Diagnosis involves blood tests, and treatment primarily relies on antimalarial drugs. Mathematical modeling is crucial for disease prevention and eradication strategies. The study uses deterministic models to analyze global malaria transmission patterns, focusing on enlightened therapy's effectiveness as a control measure.

Four compartmental models depict susceptible, latent, infected, and recovered populations, exploring various disease spread scenarios while ensuring model stability and reliability. Epidemiological principles identify disease-free and endemic equilibria, calculating the basic reproduction number. Stability analysis utilizes Lyapunov functions, supported by Laplace transformation and MAPLE18 simulations for solution derivation.

Furthermore, the study investigates the impact of fractional-order derivatives on transmission dynamics and control strategies, analyzing the effects of increasing fractional derivative orders using graphical representations. This research provides insights valuable for public health initiatives and malaria eradication efforts, emphasizing the role of Caputo fractional derivatives in refining malaria control strategies and elucidating the findings for a broader readership appeal.

利用拉普拉斯-阿多米分解法和卡普托分数阶数建立疟疾流行动态的启蒙和治疗干预数学模型
本文探讨疟疾,这是一种在非洲流行的蚊媒疾病,会引起发烧、发冷和头痛。诊断涉及血液化验,治疗主要依靠抗疟药物。数学建模对于疾病预防和根除战略至关重要。该研究利用确定性模型分析全球疟疾传播模式,重点关注启智疗法作为控制措施的有效性。四个分区模型描述了易感人群、潜伏人群、感染人群和康复人群,探索了各种疾病传播情况,同时确保了模型的稳定性和可靠性。流行病学原理确定了无疾病平衡和流行平衡,计算出基本繁殖数。此外,该研究还探讨了分数阶导数对传播动态和控制策略的影响,并使用图形表示法分析了分数阶导数增加的影响。这项研究为公共卫生倡议和疟疾根除工作提供了有价值的见解,强调了卡普托分数导数在完善疟疾控制策略中的作用,并为更广泛的读者吸引力阐明了研究结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信