Revisiting the formation of lunar anorthosites via the RbSr isotope systematics

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Qing Zhou , Heng-Ci Tian , Liyu Shan , Sen Hu , Wei Yang , Maoyong He , Lei Zhang , Yangting Lin , Xianhua Li
{"title":"Revisiting the formation of lunar anorthosites via the RbSr isotope systematics","authors":"Qing Zhou ,&nbsp;Heng-Ci Tian ,&nbsp;Liyu Shan ,&nbsp;Sen Hu ,&nbsp;Wei Yang ,&nbsp;Maoyong He ,&nbsp;Lei Zhang ,&nbsp;Yangting Lin ,&nbsp;Xianhua Li","doi":"10.1016/j.lithos.2024.107780","DOIUrl":null,"url":null,"abstract":"<div><p>The incorporation of KREEP (potassium, rare-earth element, and phosphorus), mantle-derived mafic melts and trapped liquid into the lunar ferroan anorthosite (FAN) suite plays a pivotal role in generating their geochemical and isotopic variations. Nonetheless, the specific involvement and distinct roles of these different components remain controversial. This study presents in-situ Sr isotopic data for 28 anorthositic clasts found within lunar feldspathic meteorites to trace their sources and post-modification processes. We find that these plagioclases exhibit substantial variations in their measured <sup>87</sup>Sr/<sup>86</sup>Sr values (0.69978–0.70357), in contrast to the relatively narrow range observed in Apollo 16 FANs, thereby likely reflecting a diverse chemical composition of lunar crustal rocks. In contrast, the analyzed plagioclases have consistently low <sup>87</sup>Rb/<sup>86</sup>Sr ratios (0.00185–0.03962), similar to those of Apollo samples, reflecting impact-induced loss of Rb. Detailed investigations indicate that certain elevated <sup>87</sup>Sr/<sup>86</sup>Sr ratios are probably not caused by terrestrial contamination or instrumental analysis, but most likely result from the decay of <sup>87</sup>Rb from sources with initial <sup>87</sup>Rb/<sup>86</sup>Sr higher than 0.0119–0.1380. However, such elevated <sup>87</sup>Rb/<sup>86</sup>Sr values cannot solely result from crystallization of the lunar magma ocean (LMO) and likely involve KREEP components. Combined with trace element data, we estimate the maximum proportion of KREEP melt in the formation of lunar anorthosites. Future analyses of lunar anorthosites collected by China's Chang'e-5 and Chang'e-6 missions will be crucial for validating the observed Sr isotopic heterogeneity.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0024493724002937/pdfft?md5=6fe6594065b14f8dc43965271571baf4&pid=1-s2.0-S0024493724002937-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024493724002937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The incorporation of KREEP (potassium, rare-earth element, and phosphorus), mantle-derived mafic melts and trapped liquid into the lunar ferroan anorthosite (FAN) suite plays a pivotal role in generating their geochemical and isotopic variations. Nonetheless, the specific involvement and distinct roles of these different components remain controversial. This study presents in-situ Sr isotopic data for 28 anorthositic clasts found within lunar feldspathic meteorites to trace their sources and post-modification processes. We find that these plagioclases exhibit substantial variations in their measured 87Sr/86Sr values (0.69978–0.70357), in contrast to the relatively narrow range observed in Apollo 16 FANs, thereby likely reflecting a diverse chemical composition of lunar crustal rocks. In contrast, the analyzed plagioclases have consistently low 87Rb/86Sr ratios (0.00185–0.03962), similar to those of Apollo samples, reflecting impact-induced loss of Rb. Detailed investigations indicate that certain elevated 87Sr/86Sr ratios are probably not caused by terrestrial contamination or instrumental analysis, but most likely result from the decay of 87Rb from sources with initial 87Rb/86Sr higher than 0.0119–0.1380. However, such elevated 87Rb/86Sr values cannot solely result from crystallization of the lunar magma ocean (LMO) and likely involve KREEP components. Combined with trace element data, we estimate the maximum proportion of KREEP melt in the formation of lunar anorthosites. Future analyses of lunar anorthosites collected by China's Chang'e-5 and Chang'e-6 missions will be crucial for validating the observed Sr isotopic heterogeneity.

通过铷锶同位素系统学重新审视月球正长岩的形成
KREEP(钾、稀土元素和磷)、来自地幔的岩浆熔体和被困液体融入月球铁质正长岩套件(FAN),在产生其地球化学和同位素变化方面发挥了关键作用。然而,这些不同成分的具体参与程度和不同作用仍存在争议。本研究提供了在月球长石陨石中发现的 28 个正长岩碎屑的原位锶同位素数据,以追踪它们的来源和后期改造过程。我们发现,这些斜长岩的 87Sr/86Sr 测量值(0.69978-0.70357)变化很大,与在阿波罗 16 号陨石中观察到的相对较窄的范围形成鲜明对比,从而可能反映了月壳岩石化学成分的多样性。相比之下,所分析的斜长石的 87Rb/86Sr 比值(0.00185-0.03962)一直较低,与阿波罗样本类似,反映了撞击引起的 Rb 损失。详细的调查表明,某些 87Sr/86Sr 比值升高可能不是由地面污染或仪器分析造成的,而很可能是由初始 87Rb/86Sr 高于 0.0119-0.1380 的 87Rb 源衰变造成的。然而,这种 87Rb/86Sr 值的升高不可能仅仅是月球岩浆海洋(LMO)结晶的结果,很可能涉及 KREEP 成分。结合痕量元素数据,我们估计了 KREEP 熔体在月球正长岩形成过程中所占的最大比例。未来对中国嫦娥五号和嫦娥六号任务采集的月球正长岩进行分析,对于验证观测到的锶同位素异质性至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信