{"title":"Adaptive EWMA control charts for the Rayleigh distribution","authors":"","doi":"10.1016/j.cie.2024.110505","DOIUrl":null,"url":null,"abstract":"<div><p>Numerous supplementary Shewhart monitoring designs have emerged, customized to data that follows specific non-normal distributions like the Rayleigh distribution (RD). The Rayleigh distribution has a variety of applications in modeling theory of communication, physical sciences, diagnostic imaging, life testing, reliability analysis, applied statistics and clinical studies. The exponential weighted moving average (EWMA) design is frequently advocated in the literature because of its ability to swiftly detect smaller process alterations. However, the common EWMA chart may not perform optimally in detecting all changes in the process parameters. To address this limitation, this study introduces an adaptive EWMA structure for monitoring quality characteristics following the RD, called the adaptive Rayleigh EWMA (AREWMA) chart. To determine the design parameters of the AREWMA chart, a Markov chain model is utilized. Analytical results are then used to assess the performance of the AREWMA chart in comparison to existing competitors. The comparative analysis illustrates the strengths of the proposed AREWMA chart in detecting shifts of various magnitudes during parameter monitoring. Finally, we present a practical application of the proposed AREWMA chart in the manufacturing industry, utilizing real data on the time of failure eld-tracking of devices in a system. Our analysis demonstrates the effectiveness of the AREWMA chart in detecting a range of shifts in the manufacturing process, highlighting its utility for continuous monitoring and quality control.</p></div>","PeriodicalId":55220,"journal":{"name":"Computers & Industrial Engineering","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0360835224006260/pdfft?md5=63fa3fc744d9a61285435bab328734bb&pid=1-s2.0-S0360835224006260-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Industrial Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360835224006260","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Numerous supplementary Shewhart monitoring designs have emerged, customized to data that follows specific non-normal distributions like the Rayleigh distribution (RD). The Rayleigh distribution has a variety of applications in modeling theory of communication, physical sciences, diagnostic imaging, life testing, reliability analysis, applied statistics and clinical studies. The exponential weighted moving average (EWMA) design is frequently advocated in the literature because of its ability to swiftly detect smaller process alterations. However, the common EWMA chart may not perform optimally in detecting all changes in the process parameters. To address this limitation, this study introduces an adaptive EWMA structure for monitoring quality characteristics following the RD, called the adaptive Rayleigh EWMA (AREWMA) chart. To determine the design parameters of the AREWMA chart, a Markov chain model is utilized. Analytical results are then used to assess the performance of the AREWMA chart in comparison to existing competitors. The comparative analysis illustrates the strengths of the proposed AREWMA chart in detecting shifts of various magnitudes during parameter monitoring. Finally, we present a practical application of the proposed AREWMA chart in the manufacturing industry, utilizing real data on the time of failure eld-tracking of devices in a system. Our analysis demonstrates the effectiveness of the AREWMA chart in detecting a range of shifts in the manufacturing process, highlighting its utility for continuous monitoring and quality control.
期刊介绍:
Computers & Industrial Engineering (CAIE) is dedicated to researchers, educators, and practitioners in industrial engineering and related fields. Pioneering the integration of computers in research, education, and practice, industrial engineering has evolved to make computers and electronic communication integral to its domain. CAIE publishes original contributions focusing on the development of novel computerized methodologies to address industrial engineering problems. It also highlights the applications of these methodologies to issues within the broader industrial engineering and associated communities. The journal actively encourages submissions that push the boundaries of fundamental theories and concepts in industrial engineering techniques.