A two-stage optimization model for relief distribution to disaster survivors under two-fold uncertainty

Palash Sahoo
{"title":"A two-stage optimization model for relief distribution to disaster survivors under two-fold uncertainty","authors":"Palash Sahoo","doi":"10.1016/j.sca.2024.100079","DOIUrl":null,"url":null,"abstract":"<div><p>Disasters are unforeseen occurrences requiring extensive transport deployment to support and relieve victims. Sometimes, this transportation is not feasible directly from some supply points to some destination points. Due to this tragedy, it is unclear precisely what is available at supply points, what is needed at destinations, how much transportation capacity there is, and what the routes are like. In this study, we investigate a two-stage multi-item fixed charge four-dimensional transportation problem using the concept of big data theory under the two-fold uncertainties. Here, the model’s parameters such as unit transportation costs, availabilities of items at the suppliers, fixed charges, capacities of conveyances, and demands of the items at the retailers are considered type-2 zigzag uncertain variables. Using big data theory and based on uncertain programming theory, two novel uncertain models are developed such as chance-constrained programming and expected value programming model. These two uncertain models transformed into the deterministic form via uncertainty inverse distribution theory. A critical value based reduction method with three categories (i.e., expected value, pessimistic value, and optimistic value) is applied to reduce the type-2 zigzag uncertain variable to the type-1 zigzag uncertain variable. The genetic algorithm and particle swarm optimization techniques have been proposed to find the optimal solution for the two deterministic models. The efficiency of our proposed approach is demonstrated with a real-life numerical example.</p></div>","PeriodicalId":101186,"journal":{"name":"Supply Chain Analytics","volume":"8 ","pages":"Article 100079"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949863524000220/pdfft?md5=1fce1edb90ad4c3e82f399b2092acdb8&pid=1-s2.0-S2949863524000220-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Supply Chain Analytics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949863524000220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Disasters are unforeseen occurrences requiring extensive transport deployment to support and relieve victims. Sometimes, this transportation is not feasible directly from some supply points to some destination points. Due to this tragedy, it is unclear precisely what is available at supply points, what is needed at destinations, how much transportation capacity there is, and what the routes are like. In this study, we investigate a two-stage multi-item fixed charge four-dimensional transportation problem using the concept of big data theory under the two-fold uncertainties. Here, the model’s parameters such as unit transportation costs, availabilities of items at the suppliers, fixed charges, capacities of conveyances, and demands of the items at the retailers are considered type-2 zigzag uncertain variables. Using big data theory and based on uncertain programming theory, two novel uncertain models are developed such as chance-constrained programming and expected value programming model. These two uncertain models transformed into the deterministic form via uncertainty inverse distribution theory. A critical value based reduction method with three categories (i.e., expected value, pessimistic value, and optimistic value) is applied to reduce the type-2 zigzag uncertain variable to the type-1 zigzag uncertain variable. The genetic algorithm and particle swarm optimization techniques have been proposed to find the optimal solution for the two deterministic models. The efficiency of our proposed approach is demonstrated with a real-life numerical example.

双重不确定性下向灾难幸存者发放救济的两阶段优化模型
灾害是不可预见的,需要广泛的运输部署来支持和救助灾民。有时,从某些补给点到某些目的地的直接运输并不可行。由于这种悲剧的发生,供应点有什么、目的地需要什么、运输能力有多大、路线是怎样的,这些都不清楚。在本研究中,我们利用大数据理论的概念,研究了双重不确定性下的两阶段多物品固定收费四维运输问题。在这里,模型的参数,如单位运输成本、供应商的物品供应量、固定费用、运输工具的能力和零售商的物品需求量,都被视为 2 型不确定变量。利用大数据理论并基于不确定程序设计理论,开发了两种新型不确定模型,如机会约束程序设计模型和期望值程序设计模型。这两种不确定模型通过不确定性逆分布理论转化为确定性形式。应用基于临界值的三类(即期望值、悲观值和乐观值)还原法,将 2 型之字形不确定变量还原为 1 型之字形不确定变量。我们提出了遗传算法和粒子群优化技术,以找到两个确定性模型的最优解。我们提出的方法通过一个实际的数值例子证明了其效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信