{"title":"Migration of particles suspended in yield stress fluids: Insights from numerical simulation of pipe flow of 3D printable concrete","authors":"Vishwanath Ravindran , Thiyagarajan Ranganathan , A.V. Rahul","doi":"10.1016/j.jnnfm.2024.105305","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we present a numerical model to analyse particle migration and its impact on local rheological properties when a high-yield stress suspension like 3D printable concrete is transported through a narrow circular pipe. The particle migration is studied through the lens of suspension rheology, where the effect of local particle concentration on rheological properties is accounted for using Krieger–Dougherty-type models. 3D printable mixtures with different aggregate-to-binder (a/b) ratios and flows at various discharge rates are evaluated. It is observed that, depending on the discharge rate and a/b ratio, the flow behaviour could deviate from that expected in a Poiseuille flow of Bingham fluid owing to shear-induced particle migration. Interestingly, as a consequence of particle migration, the formation of a local unsheared region close to the pipe wall is observed, apart from the plug zone at the pipe centre in the partially unsheared pipe flow of Bingham fluids. Often, for concrete pipe flow simulation, the particle size is not small enough to warrant local treatment since the finite size of the particle is not fully reflected in the flow domain. In this work, the developed numerical model is also extended to account for the finite particle size to study the transition between the sheared and unsheared regions and assess the effect of considering finite size in our simulation. Finally, the model’s capability to predict global pressure loss in pipe flow is assessed through comparisons with experimental results.</p></div>","PeriodicalId":54782,"journal":{"name":"Journal of Non-Newtonian Fluid Mechanics","volume":"332 ","pages":"Article 105305"},"PeriodicalIF":2.7000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-Newtonian Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377025724001216","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we present a numerical model to analyse particle migration and its impact on local rheological properties when a high-yield stress suspension like 3D printable concrete is transported through a narrow circular pipe. The particle migration is studied through the lens of suspension rheology, where the effect of local particle concentration on rheological properties is accounted for using Krieger–Dougherty-type models. 3D printable mixtures with different aggregate-to-binder (a/b) ratios and flows at various discharge rates are evaluated. It is observed that, depending on the discharge rate and a/b ratio, the flow behaviour could deviate from that expected in a Poiseuille flow of Bingham fluid owing to shear-induced particle migration. Interestingly, as a consequence of particle migration, the formation of a local unsheared region close to the pipe wall is observed, apart from the plug zone at the pipe centre in the partially unsheared pipe flow of Bingham fluids. Often, for concrete pipe flow simulation, the particle size is not small enough to warrant local treatment since the finite size of the particle is not fully reflected in the flow domain. In this work, the developed numerical model is also extended to account for the finite particle size to study the transition between the sheared and unsheared regions and assess the effect of considering finite size in our simulation. Finally, the model’s capability to predict global pressure loss in pipe flow is assessed through comparisons with experimental results.
期刊介绍:
The Journal of Non-Newtonian Fluid Mechanics publishes research on flowing soft matter systems. Submissions in all areas of flowing complex fluids are welcomed, including polymer melts and solutions, suspensions, colloids, surfactant solutions, biological fluids, gels, liquid crystals and granular materials. Flow problems relevant to microfluidics, lab-on-a-chip, nanofluidics, biological flows, geophysical flows, industrial processes and other applications are of interest.
Subjects considered suitable for the journal include the following (not necessarily in order of importance):
Theoretical, computational and experimental studies of naturally or technologically relevant flow problems where the non-Newtonian nature of the fluid is important in determining the character of the flow. We seek in particular studies that lend mechanistic insight into flow behavior in complex fluids or highlight flow phenomena unique to complex fluids. Examples include
Instabilities, unsteady and turbulent or chaotic flow characteristics in non-Newtonian fluids,
Multiphase flows involving complex fluids,
Problems involving transport phenomena such as heat and mass transfer and mixing, to the extent that the non-Newtonian flow behavior is central to the transport phenomena,
Novel flow situations that suggest the need for further theoretical study,
Practical situations of flow that are in need of systematic theoretical and experimental research. Such issues and developments commonly arise, for example, in the polymer processing, petroleum, pharmaceutical, biomedical and consumer product industries.