Power-law localization in one-dimensional systems with nonlinear disorder under fixed input conditions

IF 2.7 3区 数学 Q1 MATHEMATICS, APPLIED
Ba Phi Nguyen , Kihong Kim
{"title":"Power-law localization in one-dimensional systems with nonlinear disorder under fixed input conditions","authors":"Ba Phi Nguyen ,&nbsp;Kihong Kim","doi":"10.1016/j.physd.2024.134342","DOIUrl":null,"url":null,"abstract":"<div><p>We conduct a numerical investigation into wave propagation and localization in one-dimensional lattices subject to nonlinear disorder, focusing on cases with fixed input conditions. Utilizing a discrete nonlinear Schrödinger equation with Kerr-type nonlinearity and a random coefficient, we compute the averages and variances of the transmittance, <span><math><mi>T</mi></math></span>, and its logarithm, as functions of the system size <span><math><mi>L</mi></math></span>, while maintaining constant intensity for the incident wave. In cases of purely nonlinear disorder, we observe power-law localization characterized by <span><math><mrow><mrow><mo>〈</mo><mi>T</mi><mo>〉</mo></mrow><mo>∝</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>−</mo><msub><mrow><mi>γ</mi></mrow><mrow><mi>a</mi></mrow></msub></mrow></msup></mrow></math></span> and <span><math><mrow><mrow><mo>〈</mo><mo>ln</mo><mi>T</mi><mo>〉</mo></mrow><mo>≈</mo><mo>−</mo><msub><mrow><mi>γ</mi></mrow><mrow><mi>g</mi></mrow></msub><mo>ln</mo><mi>L</mi></mrow></math></span> for sufficiently large <span><math><mi>L</mi></math></span>. At low input intensities, a transition from exponential to power-law decay in <span><math><mrow><mo>〈</mo><mi>T</mi><mo>〉</mo></mrow></math></span> occurs as <span><math><mi>L</mi></math></span> increases. The exponents <span><math><msub><mrow><mi>γ</mi></mrow><mrow><mi>a</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>γ</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span> are nearly identical, converging to approximately 0.5 as the strength of the nonlinear disorder, <span><math><mi>β</mi></math></span>, increases. Additionally, the variance of <span><math><mi>T</mi></math></span> decays according to a power law with an exponent close to 1, and the variance of <span><math><mrow><mo>ln</mo><mi>T</mi></mrow></math></span> approaches a small constant as <span><math><mi>L</mi></math></span> increases. These findings are consistent with an underlying log-normal distribution of <span><math><mi>T</mi></math></span> and suggest that wave propagation behavior becomes nearly deterministic as the system size increases. When both linear and nonlinear disorders are present, we observe a transition from power-law to exponential decay in transmittance with increasing <span><math><mi>L</mi></math></span> when the strength of linear disorder, <span><math><mi>V</mi></math></span>, is less than <span><math><mi>β</mi></math></span>. As <span><math><mi>V</mi></math></span> increases, the region exhibiting power-law localization diminishes and eventually disappears when <span><math><mi>V</mi></math></span> exceeds <span><math><mi>β</mi></math></span>, leading to standard Anderson localization.</p></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"469 ","pages":"Article 134342"},"PeriodicalIF":2.7000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278924002938","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We conduct a numerical investigation into wave propagation and localization in one-dimensional lattices subject to nonlinear disorder, focusing on cases with fixed input conditions. Utilizing a discrete nonlinear Schrödinger equation with Kerr-type nonlinearity and a random coefficient, we compute the averages and variances of the transmittance, T, and its logarithm, as functions of the system size L, while maintaining constant intensity for the incident wave. In cases of purely nonlinear disorder, we observe power-law localization characterized by TLγa and lnTγglnL for sufficiently large L. At low input intensities, a transition from exponential to power-law decay in T occurs as L increases. The exponents γa and γg are nearly identical, converging to approximately 0.5 as the strength of the nonlinear disorder, β, increases. Additionally, the variance of T decays according to a power law with an exponent close to 1, and the variance of lnT approaches a small constant as L increases. These findings are consistent with an underlying log-normal distribution of T and suggest that wave propagation behavior becomes nearly deterministic as the system size increases. When both linear and nonlinear disorders are present, we observe a transition from power-law to exponential decay in transmittance with increasing L when the strength of linear disorder, V, is less than β. As V increases, the region exhibiting power-law localization diminishes and eventually disappears when V exceeds β, leading to standard Anderson localization.

固定输入条件下具有非线性无序的一维系统中的幂律局部化
我们对受到非线性无序影响的一维晶格中的波传播和定位进行了数值研究,重点是具有固定输入条件的情况。利用具有克尔型非线性和随机系数的离散非线性薛定谔方程,我们计算了透射率 T 及其对数的平均值和方差,它们是系统大小 L 的函数,同时入射波的强度保持不变。在纯粹非线性无序的情况下,我们观察到幂律局部化,其特征是 〈T〉∝L-γa 和 〈lnT〉≈-γglnL(对于足够大的 L)。在低输入强度下,随着 L 的增加,〈T〉会从指数衰减过渡到幂律衰减。指数 γa 和 γg 几乎相同,随着非线性无序度 β 的增加,指数 γa 和 γg 收敛到大约 0.5。此外,T 的方差按照指数接近 1 的幂律衰减,lnT 的方差随着 L 的增大接近一个小常数。这些发现与 T 的基本对数正态分布一致,并表明随着系统规模的增大,波的传播行为变得近乎确定性。当线性紊乱和非线性紊乱同时存在时,当线性紊乱的强度 V 小于 β 时,我们观察到透射率随着 L 的增大从幂律衰减过渡到指数衰减。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信