Developing a predictive model for the maximum power conversion efficiency of inorganic perovskites: A combined approach using density functional theory and machine learning

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
{"title":"Developing a predictive model for the maximum power conversion efficiency of inorganic perovskites: A combined approach using density functional theory and machine learning","authors":"","doi":"10.1016/j.commatsci.2024.113325","DOIUrl":null,"url":null,"abstract":"<div><p>To further improve the applicability of perovskite materials in photovoltaics, exploring perovskites with appropriate band gaps and enhanced stability is essential. Nevertheless, identifying promising perovskite materials through a perennial trial-and-error approach is both time-consuming and expensive. In this study, we introduce a method that combines machine learning (ML) and density functional theory (DFT) calculations to efficiently screen inorganic perovskite materials for photovoltaic applications. By utilizing 107 experimental data, we built a machine learning regression model capable of predicting the maximum power conversion efficiency (PCE) achieved in experiments. Light Gradient Boosting Machine (Lightgbm) exhibited superior performance with a test set R<sup>2</sup> score of 0.89. Simultaneously, another machine learning regression model was trained using 405 data to predict the theoretical maximum PCE. The best-performing model was Extreme Gradient Boosting (Xgboost) with a test set R<sup>2</sup> score of 0.93. By integrating these ML models with DFT calculations, we identified three potential inorganic perovskites: CsPdCl<sub>3</sub>, KGeCl<sub>3</sub>, and CsCu<sub>2</sub>Br<sub>3</sub>. These materials exhibit direct bandgaps of 1.47 eV, 1.37 eV, and 1.65 eV respectively, along with high thermal stability and favorable optical properties. This method constructs an experimental-theoretical-data driven framework for the prediction of inorganic perovskites, effectively reducing the research cycle in perovskite photovoltaics.</p></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025624005469","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

To further improve the applicability of perovskite materials in photovoltaics, exploring perovskites with appropriate band gaps and enhanced stability is essential. Nevertheless, identifying promising perovskite materials through a perennial trial-and-error approach is both time-consuming and expensive. In this study, we introduce a method that combines machine learning (ML) and density functional theory (DFT) calculations to efficiently screen inorganic perovskite materials for photovoltaic applications. By utilizing 107 experimental data, we built a machine learning regression model capable of predicting the maximum power conversion efficiency (PCE) achieved in experiments. Light Gradient Boosting Machine (Lightgbm) exhibited superior performance with a test set R2 score of 0.89. Simultaneously, another machine learning regression model was trained using 405 data to predict the theoretical maximum PCE. The best-performing model was Extreme Gradient Boosting (Xgboost) with a test set R2 score of 0.93. By integrating these ML models with DFT calculations, we identified three potential inorganic perovskites: CsPdCl3, KGeCl3, and CsCu2Br3. These materials exhibit direct bandgaps of 1.47 eV, 1.37 eV, and 1.65 eV respectively, along with high thermal stability and favorable optical properties. This method constructs an experimental-theoretical-data driven framework for the prediction of inorganic perovskites, effectively reducing the research cycle in perovskite photovoltaics.

Abstract Image

开发无机过氧化物最大功率转换效率的预测模型:使用密度泛函理论和机器学习的组合方法
为了进一步提高透镜材料在光伏领域的应用,探索具有适当带隙和更高稳定性的透镜材料至关重要。然而,通过常年试错的方法来识别有前景的透辉石材料既耗时又昂贵。在本研究中,我们介绍了一种结合机器学习(ML)和密度泛函理论(DFT)计算的方法,用于高效筛选光伏应用领域的无机包晶材料。通过利用 107 个实验数据,我们建立了一个机器学习回归模型,该模型能够预测实验中实现的最大功率转换效率(PCE)。光梯度提升机(Lightgbm)表现出卓越的性能,测试集 R2 得分为 0.89。同时,使用 405 个数据训练了另一个机器学习回归模型,以预测理论最大 PCE。表现最好的模型是极端梯度提升模型(Xgboost),测试集 R2 得分为 0.93。通过将这些 ML 模型与 DFT 计算相结合,我们确定了三种潜在的无机包晶:CsPdCl3、KGeCl3 和 CsCu2Br3。这些材料的直接带隙分别为 1.47 eV、1.37 eV 和 1.65 eV,同时还具有高热稳定性和良好的光学特性。该方法构建了一个实验-理论-数据驱动的无机包晶预测框架,有效缩短了包晶光伏的研究周期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信