{"title":"Stability of the logarithmic Sobolev inequality and uncertainty principle for the Tsallis entropy","authors":"Takeshi Suguro","doi":"10.1016/j.na.2024.113644","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the stability of the functional inequalities concerning the entropy functional. For the Boltzmann–Shannon entropy, the logarithmic Sobolev inequality holds as a lower bound of the entropy by the Fisher information, and the Heisenberg uncertainty principle follows from combining it with the Shannon inequality. The optimizer for these inequalities is the Gauss function, which is a fundamental solution to the heat equation. In the fields of statistical mechanics and information theory, the Tsallis entropy is known as a one-parameter extension of the Boltzmann–Shannon entropy, and the Wasserstein gradient flow of it corresponds to the quasilinear diffusion equation. We consider the improvement and stability of the optimizer for the logarithmic Sobolev inequality related to the Tsallis entropy. Furthermore, we show the stability results of the uncertainty principle concerning the Tsallis entropy.</p></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"250 ","pages":"Article 113644"},"PeriodicalIF":1.3000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0362546X24001639/pdfft?md5=6bfcdd2737c232c0665680eef2bf811d&pid=1-s2.0-S0362546X24001639-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X24001639","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the stability of the functional inequalities concerning the entropy functional. For the Boltzmann–Shannon entropy, the logarithmic Sobolev inequality holds as a lower bound of the entropy by the Fisher information, and the Heisenberg uncertainty principle follows from combining it with the Shannon inequality. The optimizer for these inequalities is the Gauss function, which is a fundamental solution to the heat equation. In the fields of statistical mechanics and information theory, the Tsallis entropy is known as a one-parameter extension of the Boltzmann–Shannon entropy, and the Wasserstein gradient flow of it corresponds to the quasilinear diffusion equation. We consider the improvement and stability of the optimizer for the logarithmic Sobolev inequality related to the Tsallis entropy. Furthermore, we show the stability results of the uncertainty principle concerning the Tsallis entropy.
期刊介绍:
Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.